예측 영업 기회 평가 구성
예측 영업 기회 점수는 예측 기계 학습 모델을 사용하여 과거 데이터를 기반으로 열려 있는 영업 기회에 대한 점수를 계산합니다. 이 점수는 판매자가 영업 기회의 우선 순위를 정하고 영업 기회 선별 비율을 높이며 영업 기회를 우량으로 선별하는 데 걸리는 시간을 줄입니다.
예를 들어, 파이프라인에 영업 기회 A와 영업 기회 B의 두 영업 기회가 있다고 가정해보십시오. 기회 채점 모델은 기회 A의 경우 80점, 기회 B의 경우 50점을 계산합니다. 점수를 기반으로 영업 기회 A가 원화 거래로 전환될 가능성이 더 높다는 것을 예측할 수 있고, 그 거래를 성사시킬 수도 있습니다. 또한 상위 영향 요인을 검토하여 영업 기회 B의 점수가 낮은 이유를 분석하고 개선 여부를 결정할 수 있습니다.
다음 이미지는 잠재 고객 채점 위젯의 예제를 보여줍니다.
기록 데이터 수집은 스코어링 모델을 생성할 때 시작됩니다. 기록 데이터는 분석을 위해 데이터 레이크에 저장됩니다. Dynamics 365 Sales 구독이 만료되거나 조직이 삭제되면 30일 후에 기록 데이터가 삭제됩니다.
Dynamics 365 Sales Enterprise 라이선스가 있으면 잠재 고객 및 영업 기회 점수 빠른 설정에서 예측 영업 기회 점수를 사용 설정할 수 있습니다. 매월 1,500개의 평가된 레코드를 받게 됩니다.
라이선스 및 역할 요구 사항
요구 사항 유형 | 반드시 필요 |
---|---|
라이선스 | Dynamics 365 Sales Premium 또는 Dynamics 365 Sales Enterprise 추가 정보: Dynamics 365 Sales 가격 |
보안 역할 | 시스템 관리자 추가 정보: 미리 정의된 영업에 대한 보안 역할 정보 |
전제 조건
과거 데이터를 기반으로 모델을 훈련할 수 있는 충분한 기회가 필요합니다. 조직은 채점 모델의 과거 데이터에서 영업 기회 훈련 필드에서 선택한 시간 프레임 동안 최소 40개의 성공 기회와 40개의 실패 영업 기회를 만들고 마감해야 합니다. 시간 프레임 범위는 3개월에서 2년입니다. 스코어링 모델을 구축하는 데 필요한 리드 수가 있는지 확인하세요.
단계별 모델을 정의하려면 선택한 시간 프레임에서 비즈니스 프로세스의 마지막 단계에서 마감된 기회가 40개 이상 있어야 합니다. 모델 학습에 포함 할 수있는 리드가 많을수록 예측 결과가 더 좋아집니다. 단계별 채점 모델을 구축하는 데 필요한 기회 수가 있는지 확인하세요.
참고
모델에 비즈니스 프로세스 흐름을 사용하려는 경우 선택한 비즈니스 프로세스 흐름을 포기한 영업 기회는 교육, 채점 및 모델 생성을 위한 최소 요구 사항 설정을 위해 고려되지 않습니다.
시스템은 데이터 레이크와 데이터를 동기화하는 데 약 4시간이 걸립니다. 최근에 기회를 마감한 경우 모델에서 즉시 기회를 고려하지 않습니다.
단계별 모델이란 무엇입니까?
단계별 모델은 과거 데이터를 기반으로 비즈니스 프로세스 흐름의 각 단계에서 속성의 영향을 계산합니다. 예를 들어 예상 마감 날짜가 기회의 여러 단계에 미치는 영향을 검토할 수 있습니다. 그런 다음 조직의 표준에 따라 각 속성과 관련된 단계를 결정하고 모델 정확도를 개선할 수 있습니다.
단계별 모델링은 기본적으로 비활성화되어 있습니다. 평가 모델을 추가할 때만 활성화할 수 있습니다.
단계별 모델링이 비활성화된 경우 모델은 수주로 마감된 기회에 더 큰 영향을 미치는 특성만 사용합니다. 예를 들어, 성사된 거래의 대부분에 연결된 회사 전화번호가 있는 경우 모델은 연결된 비즈니스 전화가 있는 기회에 더 높은 점수를 줄 수 있습니다.
첫 번째 채점 모델 만들기
중요
- 2020 릴리스 웨이브 2 이전의 Dynamics 365 버전에서 만든 모델을 사용하는 경우 새 모델을 만들기 전에 모델을 삭제하세요. 그렇지 않으면 모델의 이전 버전이 조직의 모든 영업 기회에 적용되고 새 모델이 영업 기회 아무런 영향을 미치지 않습니다.
- 2020 릴리스 웨이브 2부터는 애플리케이션에서 영업 기회 점수 관련 데이터를 msdyn_predictivescore 테이블에 작성하며 영업 기회 테이블에는 작성하지 않습니다. 리드 및 기회 점수는 모두 msdyn_predictivescore 테이블을 사용합니다.
평가 모델은 교육 및 평가를 위해 영업 기회를 선택하는 기준을 정의합니다. 조직이 여러 지역 또는 사업부에서 서로 다른 영업 관행을 따르는 경우 모델을 만들고 각각에 대해 고유한 교육 세트를 만들 수 있습니다.
영업 허브 페이지 왼쪽 아래에 있는 영역 변경에서 Sales Insights 설정을 선택합니다.
예측 모델 아래 사이트 맵에서 영업 기회 점수를 선택합니다.
조직에 과거의 영업 기회로 학습 필드에서 식별된 시간 프레임에서 생성된 40개의 적격 영업 기회 및 40개의 부적격 영어 기회가 없는 경우 점수 모델을 만들 수 없습니다. 영업 기회가 충분하면 앱이 기본적으로 모델을 생성합니다.
예측 영업 기회 점수 페이지에서 필요한 경우 비즈니스 프로세스 흐름, 필터 열 등과 같은 필드 값을 변경합니다. 이러한 필드에 대한 자세한 내용은 다음 섹션 모델 추가를 참조하십시오. 완료되면 시작을 선택합니다.
앱이 모델을 훈련할 때까지 조금 기다립니다. 페이지를 종료한 후 나중에 돌아올 수 있습니다.
애플리케이션은 표준 특성을 사용하여 모델을 교육합니다. 나중에 사용자 지정 또는 지능형 특성을 포함하도록 모델 편집을 할 수 있습니다.
모델 게시
모델이 학습되고 게시할 준비가 되면 예측 영업 기회 점수 페이지에 확인 메시지가 표시됩니다.
모델이 학습되었지만 게시할 준비가 되지 않은 경우 모델 성능 필드에 게시 준비 안 됨이 표시됩니다.
15일마다 모델을 재학습하려면 자동 재학습은 선택합니다.
게시 또는 세부 정보 보기를 선택합니다.
모델을 게시할 준비가 되었고 적용할 준비가 되었으면 게시를 선택합니다.
모델 구성에 지정된 기준과 일치하는 영업 기회에 모델이 적용됩니다. 영업 기회 점수는 영업 기회 점수 열 아래의 보기 및 영업 기회 양식의 위젯에 표시됩니다.
게시하기 전에 모델의 정확도 및 성능을 보거나 모델을 게기할 수 없는 경우 이유를 알고 싶다면 세부 정보 보기를 선택한 다음 성능 탭을 선택하세요.
정확도가 AUC(Area Under Curve) 점수라는 임계값 아래로 떨어지면 모델을 게시할 준비가 되지 않은 것으로 앱에서 결정합니다. 원하는 경우 모델을 게시할 수 있습니다. 그러나 제대로 수행되지 않습니다.
모델 추가
서로 다른 영업 기회 세트에 대해 게시된 모델과 게시되지 않은 모델을 최대 10개까지 만들 수 있습니다. 기존 모델과 동일한 영업 기회 점수를 매길 수 있는 모델을 만들려고 하면 앱에서 경고합니다.
예측 영업 기회 점수 페이지 하단에서 모델 추가를 선택하세요.
노트
점수 모델을 하나 이상 생성하지 않은 경우 모델 추가 버튼이 표시되지 않습니다.
예측 영업 기회 점수 페이지가 기본값으로 열립니다.
새 모델 이름 상자에 영숫자가 포함된 이름을 입력합니다. 밑줄은 허용되지만 공백이나 기타 특수 문자는 허용되지 않습니다.
기본적으로 이름은 OpportunityScoring_<YYYYMMDD><시각>(예: OpportunityScoring_202009181410) 형식입니다. 날짜와 시간은 UTC(협정세계시)를 기준으로 합니다.
비즈니스 프로세스 흐름 목록에서 모델을 생성하는 영업 기회와 관련된 흐름을 선택합니다. 선택한 비즈니스 프로세스 흐름을 포기한 영업 기회는 교육, 채점 및 모델 생성을 위한 최소 요구 사항 설정을 위해 고려되지 않습니다.
목록에는 조직의 영업 기회에 대해 정의된 모든 비즈니스 프로세스 흐름이 표시됩니다. 단계별 모델링을 활성화하려면 비즈니스 프로세스 흐름을 선택해야 합니다.
목록에 사용자 지정 비즈니스 프로세스 흐름을 표시하려면 비즈니스 프로세스 흐름 엔터티에 대해 변경 내용 추적을 사용합니다. 모델을 생성하면 사용자 지정 비즈니스 프로세스가 자동으로 사용되어 분석을 위해 데이터를 데이터 레이크에 동기화합니다.
상태 옵션 집합 목록에서 영업 기회의 상태가 정의된 옵션 집합를 선택합니다.
성공한 값 및 실패한 값 목록에서 각각 해당 값을 선택합니다.
기본 제공 상태 상태 옵션 집합에는 성공 및 실패로 값이 정의됩니다. 정의된 경우 사용자 지정 옵션 집합을 선택할 수 있습니다.
필터 열 및 필터 값를 선택하여 모델이 점수를 매겨야 하는 영업 기회를 지정합니다.
여러 열을 기준으로 필터링하려면 필수 열로 계산 필드를 만든 다음 필터 열 목록에서 계산 필드를 선택합니다.
과거의 잠재 고객으로 학습 목록에서 학습 세트의 기간을 선택합니다. 기본값은 2년입니다.
조직에는 선택한 기간 동안 생성되고 종료된 최소 40개의 성공 영업 기회와 40개의 실패 영업 기회가 있어야 합니다. 이 모델은 선택한 기간의 마감된 영업 기회를 분석하고 이를 사용하여 지난 2년 동안의 열린 영업 기회에 점수를 매깁니다.
선택한 기간 동안 최소한으로 종료된 영업 기회가 충분하지 않으면 시작하기 버튼이 사용 중지됩니다. 모델을 학습시킬 수 있는 종료된 영업 기회가 충분히 있는 다른 기간을 선택합니다.
(선택 사항) 단계별 모델링을 사용하여 모델이 각 비즈니스 프로세스 단계에 대해 고려해야 하는 특성을 선택합니다.
모델을 만든 후에는 여러 단계에서 각 특성의 예측 영향을 볼 수 있습니다. 그런 다음 특성과 해당 단계를 선택할 수 있습니다.
노트
단계별 모델링을 사용하는 경우 비즈니스 프로세스 흐름 목록에서 유효한 비즈니스 프로세스를 선택했는지 확인하세요.
시작하기를 선택합니다. 모델이 기존 모델과 중복되고 동일한 영업 기회 세트에 점수를 매기는 경우 경고 메시지가 표시됩니다. 계속해서 모델을 생성하도록 선택하거나 구성을 변경하여 모델이 고유한 영업 기회 세트에 점수를 매기도록 할 수 있습니다.
시스템이 모델을 훈련할 때까지 몇 분 정도 기다립니다.
모델이 훈련되면 모델을 게시하거나 세부 정보를 봅니다.
앱에서 옵션을 찾을 수 없습니까?
세 가지 가능성이 있습니다.
- 당신에게는 필요한 면허나 역할이 없습니다. 이 페이지 상단의 라이센스 및 역할 요구 사항 섹션을 확인하세요.
- 관리자가 기능을 사용 설정하지 않았습니다.
- 조직에서 사용자 지정 앱을 사용 중입니다. 정확한 단계는 관리자에게 문의하세요. 이 문서에 설명된 단계는 기본 제공 영업 허브 및 Sales Professional 앱에만 해당됩니다.
관련 정보
Dataverse에 데이터를 푸시할 수 있는 시스템 및 애플리케이션 사용자
영업 기회 점수 모델 편집 및 재학습
점수를 통해 영업 기회 우선 순위 지정
영업 기회 관리 FAQ