AnomalyDetectorClient.DetectUnivariateLastPointAsync Método
Definición
Importante
Parte de la información hace referencia a la versión preliminar del producto, que puede haberse modificado sustancialmente antes de lanzar la versión definitiva. Microsoft no otorga ninguna garantía, explícita o implícita, con respecto a la información proporcionada aquí.
Sobrecargas
DetectUnivariateLastPointAsync(UnivariateDetectionOptions, CancellationToken) |
Detecte el estado de anomalía del último punto de la serie temporal. |
DetectUnivariateLastPointAsync(RequestContent, RequestContext) |
[Método Protocol] Detecte el estado de anomalía del último punto de la serie temporal.
|
DetectUnivariateLastPointAsync(UnivariateDetectionOptions, CancellationToken)
- Source:
- AnomalyDetectorClient.cs
Detecte el estado de anomalía del último punto de la serie temporal.
public virtual System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>> DetectUnivariateLastPointAsync (Azure.AI.AnomalyDetector.UnivariateDetectionOptions options, System.Threading.CancellationToken cancellationToken = default);
abstract member DetectUnivariateLastPointAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>>
override this.DetectUnivariateLastPointAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>>
Public Overridable Function DetectUnivariateLastPointAsync (options As UnivariateDetectionOptions, Optional cancellationToken As CancellationToken = Nothing) As Task(Of Response(Of UnivariateLastDetectionResult))
Parámetros
- options
- UnivariateDetectionOptions
Método de detección de anomalías univariante.
- cancellationToken
- CancellationToken
Token de cancelación que se va a usar.
Devoluciones
Excepciones
options
es null.
Ejemplos
En este ejemplo se muestra cómo llamar a DetectUnivariateLastPointAsync con los parámetros necesarios.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var options = new UnivariateDetectionOptions(new TimeSeriesPoint[]
{
new TimeSeriesPoint(3.14f)
{
Timestamp = DateTimeOffset.UtcNow,
}
})
{
Granularity = TimeGranularity.Yearly,
CustomInterval = 1234,
Period = 1234,
MaxAnomalyRatio = 3.14f,
Sensitivity = 1234,
ImputeMode = ImputeMode.Auto,
ImputeFixedValue = 3.14f,
};
var result = await client.DetectUnivariateLastPointAsync(options);
Comentarios
Esta operación genera un modelo mediante los puntos que envió a la API y en función de todos los datos para determinar si el último punto es anómalo.
Se aplica a
DetectUnivariateLastPointAsync(RequestContent, RequestContext)
- Source:
- AnomalyDetectorClient.cs
[Método Protocol] Detecte el estado de anomalía del último punto de la serie temporal.
- Este método de protocolo permite la creación explícita de la solicitud y el procesamiento de la respuesta para escenarios avanzados.
- Pruebe primero la sobrecarga de comodidad más DetectUnivariateLastPointAsync(UnivariateDetectionOptions, CancellationToken) sencilla con modelos fuertemente tipados.
public virtual System.Threading.Tasks.Task<Azure.Response> DetectUnivariateLastPointAsync (Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member DetectUnivariateLastPointAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
override this.DetectUnivariateLastPointAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
Public Overridable Function DetectUnivariateLastPointAsync (content As RequestContent, Optional context As RequestContext = Nothing) As Task(Of Response)
Parámetros
- content
- RequestContent
Contenido que se va a enviar como el cuerpo de la solicitud.
- context
- RequestContext
Contexto de solicitud, que puede invalidar los comportamientos predeterminados de la canalización de cliente por llamada.
Devoluciones
Respuesta devuelta desde el servicio.
Excepciones
content
es null.
El servicio devolvió un código de estado no correcto.
Ejemplos
En este ejemplo se muestra cómo llamar a DetectUnivariateLastPointAsync con el contenido de solicitud necesario y cómo analizar el resultado.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
value = 123.45f,
}
},
};
Response response = await client.DetectUnivariateLastPointAsync(RequestContent.Create(data));
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());
En este ejemplo se muestra cómo llamar a DetectUnivariateLastPointAsync con todo el contenido de la solicitud y cómo analizar el resultado.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
timestamp = "2022-05-10T14:57:31.2311892-04:00",
value = 123.45f,
}
},
granularity = "yearly",
customInterval = 1234,
period = 1234,
maxAnomalyRatio = 123.45f,
sensitivity = 1234,
imputeMode = "auto",
imputeFixedValue = 123.45f,
};
Response response = await client.DetectUnivariateLastPointAsync(RequestContent.Create(data), new RequestContext());
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());
Console.WriteLine(result.GetProperty("severity").ToString());
Comentarios
Esta operación genera un modelo mediante los puntos que envió a la API y en función de todos los datos para determinar si el último punto es anómalo.
A continuación se muestra el esquema JSON para las cargas de solicitud y respuesta.
Cuerpo de la solicitud:
Esquema para UnivariateDetectionOptions
:
{
series: [
{
timestamp: string (date & time), # Optional.
value: number, # Required.
}
], # Required.
granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none", # Optional.
customInterval: number, # Optional.
period: number, # Optional.
maxAnomalyRatio: number, # Optional.
sensitivity: number, # Optional.
imputeMode: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill", # Optional.
imputeFixedValue: number, # Optional.
}
Cuerpo de la respuesta:
Esquema para UnivariateLastDetectionResult
:
{
period: number, # Required.
suggestedWindow: number, # Required.
expectedValue: number, # Required.
upperMargin: number, # Required.
lowerMargin: number, # Required.
isAnomaly: boolean, # Required.
isNegativeAnomaly: boolean, # Required.
isPositiveAnomaly: boolean, # Required.
severity: number, # Optional.
}
Se aplica a
Azure SDK for .NET