Compartir a través de


AnomalyDetectorClient.DetectUnivariateLastPointAsync Método

Definición

Sobrecargas

DetectUnivariateLastPointAsync(UnivariateDetectionOptions, CancellationToken)

Detecte el estado de anomalía del último punto de la serie temporal.

DetectUnivariateLastPointAsync(RequestContent, RequestContext)

[Método Protocol] Detecte el estado de anomalía del último punto de la serie temporal.

DetectUnivariateLastPointAsync(UnivariateDetectionOptions, CancellationToken)

Source:
AnomalyDetectorClient.cs

Detecte el estado de anomalía del último punto de la serie temporal.

public virtual System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>> DetectUnivariateLastPointAsync (Azure.AI.AnomalyDetector.UnivariateDetectionOptions options, System.Threading.CancellationToken cancellationToken = default);
abstract member DetectUnivariateLastPointAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>>
override this.DetectUnivariateLastPointAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>>
Public Overridable Function DetectUnivariateLastPointAsync (options As UnivariateDetectionOptions, Optional cancellationToken As CancellationToken = Nothing) As Task(Of Response(Of UnivariateLastDetectionResult))

Parámetros

options
UnivariateDetectionOptions

Método de detección de anomalías univariante.

cancellationToken
CancellationToken

Token de cancelación que se va a usar.

Devoluciones

Excepciones

options es null.

Ejemplos

En este ejemplo se muestra cómo llamar a DetectUnivariateLastPointAsync con los parámetros necesarios.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var options = new UnivariateDetectionOptions(new TimeSeriesPoint[] 
{
    new TimeSeriesPoint(3.14f)
{
        Timestamp = DateTimeOffset.UtcNow,
    }
})
{
    Granularity = TimeGranularity.Yearly,
    CustomInterval = 1234,
    Period = 1234,
    MaxAnomalyRatio = 3.14f,
    Sensitivity = 1234,
    ImputeMode = ImputeMode.Auto,
    ImputeFixedValue = 3.14f,
};
var result = await client.DetectUnivariateLastPointAsync(options);

Comentarios

Esta operación genera un modelo mediante los puntos que envió a la API y en función de todos los datos para determinar si el último punto es anómalo.

Se aplica a

DetectUnivariateLastPointAsync(RequestContent, RequestContext)

Source:
AnomalyDetectorClient.cs

[Método Protocol] Detecte el estado de anomalía del último punto de la serie temporal.

public virtual System.Threading.Tasks.Task<Azure.Response> DetectUnivariateLastPointAsync (Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member DetectUnivariateLastPointAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
override this.DetectUnivariateLastPointAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
Public Overridable Function DetectUnivariateLastPointAsync (content As RequestContent, Optional context As RequestContext = Nothing) As Task(Of Response)

Parámetros

content
RequestContent

Contenido que se va a enviar como el cuerpo de la solicitud.

context
RequestContext

Contexto de solicitud, que puede invalidar los comportamientos predeterminados de la canalización de cliente por llamada.

Devoluciones

Respuesta devuelta desde el servicio.

Excepciones

content es null.

El servicio devolvió un código de estado no correcto.

Ejemplos

En este ejemplo se muestra cómo llamar a DetectUnivariateLastPointAsync con el contenido de solicitud necesario y cómo analizar el resultado.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var data = new {
    series = new[] {
        new {
            value = 123.45f,
        }
    },
};

Response response = await client.DetectUnivariateLastPointAsync(RequestContent.Create(data));

JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());

En este ejemplo se muestra cómo llamar a DetectUnivariateLastPointAsync con todo el contenido de la solicitud y cómo analizar el resultado.

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var data = new {
    series = new[] {
        new {
            timestamp = "2022-05-10T14:57:31.2311892-04:00",
            value = 123.45f,
        }
    },
    granularity = "yearly",
    customInterval = 1234,
    period = 1234,
    maxAnomalyRatio = 123.45f,
    sensitivity = 1234,
    imputeMode = "auto",
    imputeFixedValue = 123.45f,
};

Response response = await client.DetectUnivariateLastPointAsync(RequestContent.Create(data), new RequestContext());

JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());
Console.WriteLine(result.GetProperty("severity").ToString());

Comentarios

Esta operación genera un modelo mediante los puntos que envió a la API y en función de todos los datos para determinar si el último punto es anómalo.

A continuación se muestra el esquema JSON para las cargas de solicitud y respuesta.

Cuerpo de la solicitud:

Esquema para UnivariateDetectionOptions:

{
  series: [
    {
      timestamp: string (date & time), # Optional.
      value: number, # Required.
    }
  ], # Required.
  granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none", # Optional.
  customInterval: number, # Optional.
  period: number, # Optional.
  maxAnomalyRatio: number, # Optional.
  sensitivity: number, # Optional.
  imputeMode: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill", # Optional.
  imputeFixedValue: number, # Optional.
}

Cuerpo de la respuesta:

Esquema para UnivariateLastDetectionResult:

{
  period: number, # Required.
  suggestedWindow: number, # Required.
  expectedValue: number, # Required.
  upperMargin: number, # Required.
  lowerMargin: number, # Required.
  isAnomaly: boolean, # Required.
  isNegativeAnomaly: boolean, # Required.
  isPositiveAnomaly: boolean, # Required.
  severity: number, # Optional.
}

Se aplica a