AnomalyDetectorClient.DetectUnivariateLastPoint Método
Definición
Importante
Parte de la información hace referencia a la versión preliminar del producto, que puede haberse modificado sustancialmente antes de lanzar la versión definitiva. Microsoft no otorga ninguna garantía, explícita o implícita, con respecto a la información proporcionada aquí.
Sobrecargas
DetectUnivariateLastPoint(UnivariateDetectionOptions, CancellationToken) |
Detecte el estado de anomalía del último momento de la serie temporal. |
DetectUnivariateLastPoint(RequestContent, RequestContext) |
[Método Protocol] Detecte el estado de anomalía del último momento de la serie temporal.
|
DetectUnivariateLastPoint(UnivariateDetectionOptions, CancellationToken)
- Source:
- AnomalyDetectorClient.cs
Detecte el estado de anomalía del último momento de la serie temporal.
public virtual Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult> DetectUnivariateLastPoint(Azure.AI.AnomalyDetector.UnivariateDetectionOptions options, System.Threading.CancellationToken cancellationToken = default);
abstract member DetectUnivariateLastPoint : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>
override this.DetectUnivariateLastPoint : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> Azure.Response<Azure.AI.AnomalyDetector.UnivariateLastDetectionResult>
Public Overridable Function DetectUnivariateLastPoint (options As UnivariateDetectionOptions, Optional cancellationToken As CancellationToken = Nothing) As Response(Of UnivariateLastDetectionResult)
Parámetros
- options
- UnivariateDetectionOptions
Método de detección de anomalías univariante.
- cancellationToken
- CancellationToken
Token de cancelación que se va a usar.
Devoluciones
Excepciones
options
es null.
Ejemplos
En este ejemplo se muestra cómo llamar a DetectUnivariateLastPoint con parámetros necesarios.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var options = new UnivariateDetectionOptions(new TimeSeriesPoint[]
{
new TimeSeriesPoint(3.14f)
{
Timestamp = DateTimeOffset.UtcNow,
}
})
{
Granularity = TimeGranularity.Yearly,
CustomInterval = 1234,
Period = 1234,
MaxAnomalyRatio = 3.14f,
Sensitivity = 1234,
ImputeMode = ImputeMode.Auto,
ImputeFixedValue = 3.14f,
};
var result = client.DetectUnivariateLastPoint(options);
Comentarios
Esta operación genera un modelo mediante los puntos que envió a la API y en función de todos los datos para determinar si el último punto es anómalo.
Se aplica a
DetectUnivariateLastPoint(RequestContent, RequestContext)
- Source:
- AnomalyDetectorClient.cs
[Método Protocol] Detecte el estado de anomalía del último momento de la serie temporal.
- Este método de protocolo permite la creación explícita de la solicitud y el procesamiento de la respuesta para escenarios avanzados.
- Pruebe primero la sobrecarga de comodidad más DetectUnivariateLastPoint(UnivariateDetectionOptions, CancellationToken) sencilla con modelos fuertemente tipados.
public virtual Azure.Response DetectUnivariateLastPoint(Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member DetectUnivariateLastPoint : Azure.Core.RequestContent * Azure.RequestContext -> Azure.Response
override this.DetectUnivariateLastPoint : Azure.Core.RequestContent * Azure.RequestContext -> Azure.Response
Public Overridable Function DetectUnivariateLastPoint (content As RequestContent, Optional context As RequestContext = Nothing) As Response
Parámetros
- content
- RequestContent
Contenido que se va a enviar como el cuerpo de la solicitud.
- context
- RequestContext
Contexto de solicitud, que puede invalidar los comportamientos predeterminados de la canalización de cliente por llamada.
Devoluciones
Respuesta devuelta por el servicio.
Excepciones
content
es null.
El servicio devolvió un código de estado no correcto.
Ejemplos
En este ejemplo se muestra cómo llamar a DetectUnivariateLastPoint con contenido de solicitud necesario y cómo analizar el resultado.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
value = 123.45f,
}
},
};
Response response = client.DetectUnivariateLastPoint(RequestContent.Create(data));
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());
En este ejemplo se muestra cómo llamar a DetectUnivariateLastPoint con todo el contenido de la solicitud y cómo analizar el resultado.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
timestamp = "2022-05-10T14:57:31.2311892-04:00",
value = 123.45f,
}
},
granularity = "yearly",
customInterval = 1234,
period = 1234,
maxAnomalyRatio = 123.45f,
sensitivity = 1234,
imputeMode = "auto",
imputeFixedValue = 123.45f,
};
Response response = client.DetectUnivariateLastPoint(RequestContent.Create(data), new RequestContext());
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("suggestedWindow").ToString());
Console.WriteLine(result.GetProperty("expectedValue").ToString());
Console.WriteLine(result.GetProperty("upperMargin").ToString());
Console.WriteLine(result.GetProperty("lowerMargin").ToString());
Console.WriteLine(result.GetProperty("isAnomaly").ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly").ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly").ToString());
Console.WriteLine(result.GetProperty("severity").ToString());
Comentarios
Esta operación genera un modelo mediante los puntos que envió a la API y en función de todos los datos para determinar si el último punto es anómalo.
A continuación se muestra el esquema JSON para las cargas de solicitud y respuesta.
Cuerpo de la solicitud:
Esquema para UnivariateDetectionOptions
:
{
series: [
{
timestamp: string (date & time), # Optional.
value: number, # Required.
}
], # Required.
granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none", # Optional.
customInterval: number, # Optional.
period: number, # Optional.
maxAnomalyRatio: number, # Optional.
sensitivity: number, # Optional.
imputeMode: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill", # Optional.
imputeFixedValue: number, # Optional.
}
Cuerpo de la respuesta:
Esquema para UnivariateLastDetectionResult
:
{
period: number, # Required.
suggestedWindow: number, # Required.
expectedValue: number, # Required.
upperMargin: number, # Required.
lowerMargin: number, # Required.
isAnomaly: boolean, # Required.
isNegativeAnomaly: boolean, # Required.
isPositiveAnomaly: boolean, # Required.
severity: number, # Optional.
}
Se aplica a
Azure SDK for .NET