SgdBinaryTrainerBase<TModel> Класс
Определение
Важно!
Некоторые сведения относятся к предварительной версии продукта, в которую до выпуска могут быть внесены существенные изменения. Майкрософт не предоставляет никаких гарантий, явных или подразумеваемых, относительно приведенных здесь сведений.
public abstract class SgdBinaryTrainerBase<TModel> : Microsoft.ML.Trainers.LinearTrainerBase<Microsoft.ML.Data.BinaryPredictionTransformer<TModel>,TModel> where TModel : class
type SgdBinaryTrainerBase<'Model (requires 'Model : null)> = class
inherit LinearTrainerBase<BinaryPredictionTransformer<'Model>, 'Model (requires 'Model : null)>
Public MustInherit Class SgdBinaryTrainerBase(Of TModel)
Inherits LinearTrainerBase(Of BinaryPredictionTransformer(Of TModel), TModel)
Параметры типа
- TModel
- Наследование
-
LinearTrainerBase<BinaryPredictionTransformer<TModel>,TModel>SgdBinaryTrainerBase<TModel>
- Производный
Поля
FeatureColumn |
Столбец признаков, который ожидает тренер. (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Столбец метки, который ожидает тренер. Может иметь значение |
WeightColumn |
Столбец веса, который ожидает тренер. Может быть |
Свойства
Info |
Методы
Fit(IDataView, LinearModelParameters) |
Продолжает обучение SdcaLogisticRegressionBinaryTrainer использования уже обученного |
Fit(IDataView) |
Тренирует и возвращает .ITransformer (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) | (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
Методы расширения
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Добавьте "контрольную точку кэширования" в цепочку оценщика. Это гарантирует, что подчиненные оценщики будут обучены на основе кэшированных данных. Рекомендуется использовать контрольную точку кэширования перед обучением, которые принимают несколько данных. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Учитывая оценщик, верните объект-оболочку, который будет вызывать делегат один раз Fit(IDataView) . Часто важно, чтобы оценщик возвращал сведения о том, что было положено, поэтому Fit(IDataView) метод возвращает специально типизированный объект, а не просто общий ITransformer. Однако в то же время часто IEstimator<TTransformer> формируются в конвейеры со многими объектами, поэтому нам может потребоваться создать цепочку оценщиков, где EstimatorChain<TLastTransformer> оценщик, для которого мы хотим получить преобразователь, похоронен где-то в этой цепочке. В этом сценарии мы можем подключить делегат, который будет вызываться после вызова соответствия. |