Поделиться через


LearningPipelineExtensions.WithOnFitDelegate<TTransformer> Метод

Определение

Учитывая оценщик, возвращает объект-оболочку, который будет вызывать делегат один раз Fit(IDataView) . Часто важно, чтобы оценщик возвращал сведения о том, что было в форме, поэтому Fit(IDataView) метод возвращает специально типизированный объект, а не просто общий ITransformer. Однако, в то же время, IEstimator<TTransformer> часто формируются в конвейеры со многими объектами, поэтому нам может потребоваться построить цепочку оценщиков, где EstimatorChain<TLastTransformer> оценщик, для которого мы хотим получить преобразователь, похоронен где-то в этой цепочке. В этом сценарии мы можем подключить делегат, который будет вызываться после вызова соответствия.

public static Microsoft.ML.IEstimator<TTransformer> WithOnFitDelegate<TTransformer> (this Microsoft.ML.IEstimator<TTransformer> estimator, Action<TTransformer> onFit) where TTransformer : class, Microsoft.ML.ITransformer;
static member WithOnFitDelegate : Microsoft.ML.IEstimator<'ransformer (requires 'ransformer : null and 'ransformer :> Microsoft.ML.ITransformer)> * Action<'ransformer (requires 'ransformer : null and 'ransformer :> Microsoft.ML.ITransformer)> -> Microsoft.ML.IEstimator<'ransformer (requires 'ransformer : null and 'ransformer :> Microsoft.ML.ITransformer)> (requires 'ransformer : null and 'ransformer :> Microsoft.ML.ITransformer)
<Extension()>
Public Function WithOnFitDelegate(Of TTransformer As {Class, ITransformer}) (estimator As IEstimator(Of TTransformer), onFit As Action(Of TTransformer)) As IEstimator(Of TTransformer)

Параметры типа

TTransformer

Тип возвращаемого ITransformer значения estimator

Параметры

estimator
IEstimator<TTransformer>

Оценщик для переноса

onFit
Action<TTransformer>

Делегат, который вызывается с полученными TTransformer экземплярами после Fit(IDataView) вызова. Так как Fit(IDataView) этот делегат может вызываться несколько раз, этот делегат также может вызываться несколько раз.

Возвращаемое значение

Оценщик упаковки, вызывающий указанный делегат при каждом вызове

Примеры

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class WithOnFitDelegate
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
                    Label = true },

                new DataPoint(){ Features = new float[4] { 6, 2, 2, 0},
                    Label = true },

                new DataPoint(){ Features = new float[4] { 4, 0, 1, 0},
                    Label = false },

                new DataPoint(){ Features = new float[4] { 2,-1,-1, 1},
                    Label = false }

            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Create a pipeline to normalize the features and train a binary
            // classifier. We use WithOnFitDelegate for the intermediate binning
            // normalization step, so that we can inspect the properties of the
            // normalizer after fitting.
            NormalizingTransformer binningTransformer = null;
            var pipeline =
                mlContext.Transforms
                .NormalizeBinning("Features", maximumBinCount: 3)
                .WithOnFitDelegate(
                fittedTransformer => binningTransformer = fittedTransformer)
                .Append(mlContext.BinaryClassification.Trainers
                .LbfgsLogisticRegression());

            Console.WriteLine(binningTransformer == null);
            // Expected Output:
            //   True

            var model = pipeline.Fit(data);

            // During fitting binningTransformer will get assigned a new value
            Console.WriteLine(binningTransformer == null);
            // Expected Output:
            //   False

            // Inspect some of the properties of the binning transformer
            var binningParam = binningTransformer.GetNormalizerModelParameters(0) as
                BinNormalizerModelParameters<ImmutableArray<float>>;

            for (int i = 0; i < binningParam.UpperBounds.Length; i++)
            {
                var upperBounds = string.Join(", ", binningParam.UpperBounds[i]);
                Console.WriteLine(
                    $"Bin {i}: Density = {binningParam.Density[i]}, " +
                    $"Upper-bounds = {upperBounds}");

            }
            // Expected output:
            //   Bin 0: Density = 2, Upper-bounds = 3, 7, Infinity
            //   Bin 1: Density = 2, Upper-bounds = -0.5, 1.5, Infinity
            //   Bin 2: Density = 2, Upper-bounds = 0, 2.5, Infinity
            //   Bin 3: Density = 1, Upper-bounds = 0.5, Infinity
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }
            public bool Label { get; set; }
        }
    }
}

Применяется к