SgdNonCalibratedTrainer Класс
Определение
Важно!
Некоторые сведения относятся к предварительной версии продукта, в которую до выпуска могут быть внесены существенные изменения. Майкрософт не предоставляет никаких гарантий, явных или подразумеваемых, относительно приведенных здесь сведений.
Для IEstimator<TTransformer> обучения логистической регрессии с помощью метода параллельного стохастического градиента.
public sealed class SgdNonCalibratedTrainer : Microsoft.ML.Trainers.SgdBinaryTrainerBase<Microsoft.ML.Trainers.LinearBinaryModelParameters>
type SgdNonCalibratedTrainer = class
inherit SgdBinaryTrainerBase<LinearBinaryModelParameters>
Public NotInheritable Class SgdNonCalibratedTrainer
Inherits SgdBinaryTrainerBase(Of LinearBinaryModelParameters)
- Наследование
-
LinearTrainerBase<BinaryPredictionTransformer<TModel>,TModel>SgdNonCalibratedTrainer
Комментарии
Чтобы создать этот обучатель, используйте Методы Обучения Для этого используйте Методы ХепНонКалиброван или Параметров.
Входные и выходные столбцы
Входные данные столбца меток должны иметь тип Boolean. Входные данные столбцов должны быть вектором известного Singleразмера. Этот алгоритм обучения выводит следующие столбцы:
Имя выходного столбца | Тип столбца | Описание |
---|---|---|
Score |
Single | Несвязанная оценка, вычисляемая моделью. |
PredictedLabel |
Boolean | Прогнозируемая метка, зависящая от знака оценки. Отрицательная оценка соответствует значению false , а положительная — значению true . |
Характеристики тренера
Задача машинного обучения | Двоичная классификация |
Требуется ли нормализация? | Да |
Требуется ли кэширование? | Нет |
Обязательный NuGet в дополнение к Microsoft.ML | Нет |
Экспортируемый в ONNX | Да |
Сведения о алгоритме обучения
Стохастический градиентный градиентный спуск (JSON) является одной из популярных процедур стохастической оптимизации, которые можно интегрировать в несколько задач машинного обучения для достижения высокого уровня производительности. Этот тренер реализует градиентный градиентный спуск Hogwild для двоичной классификации, которая поддерживает многопоточное без блокировки. Если связанная проблема оптимизации разрежена, Hogwild Stochastic Градиентный спуск достигает почти оптимальной скорости конвергенции. Дополнительные сведения о Hogwild Stochastic Градиентный спуск можно найти здесь.
Ознакомьтесь с разделом "См. также" ссылки на примеры использования.
Поля
FeatureColumn |
Столбец признаков, который ожидает тренер. (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Столбец меток, который ожидает тренер. Может иметь значение |
WeightColumn |
Столбец веса, который ожидает тренер. Может быть |
Свойства
Info |
Для IEstimator<TTransformer> обучения логистической регрессии с помощью метода параллельного стохастического градиента. (Унаследовано от SgdBinaryTrainerBase<TModel>) |
Методы
Fit(IDataView, LinearModelParameters) |
Продолжает обучение использования уже обученного SdcaLogisticRegressionBinaryTrainer |
Fit(IDataView) |
Поезда и возвращается ITransformer. (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Для IEstimator<TTransformer> обучения логистической регрессии с помощью метода параллельного стохастического градиента. (Унаследовано от TrainerEstimatorBase<TTransformer,TModel>) |
Методы расширения
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Добавьте "контрольную точку кэширования" в цепочку оценщика. Это обеспечит обучение подчиненных оценщиков на основе кэшированных данных. Рекомендуется создать контрольную точку кэширования перед обучением, которые принимают несколько передач данных. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Учитывая оценщик, возвращает объект-оболочку, который будет вызывать делегат один раз Fit(IDataView) . Часто важно, чтобы оценщик возвращал сведения о том, что было в форме, поэтому Fit(IDataView) метод возвращает специально типизированный объект, а не просто общий ITransformer. Однако, в то же время, IEstimator<TTransformer> часто формируются в конвейеры со многими объектами, поэтому нам может потребоваться построить цепочку оценщиков, где EstimatorChain<TLastTransformer> оценщик, для которого мы хотим получить преобразователь, похоронен где-то в этой цепочке. В этом сценарии мы можем подключить делегат, который будет вызываться после вызова соответствия. |