Score Vowpal Wabbit versão 7-4 modelo
Importante
O suporte para o Machine Learning Studio (clássico) terminará em 31 de agosto de 2024. É recomendável fazer a transição para o Azure Machine Learning até essa data.
A partir de 1º de dezembro de 2021, você não poderá criar recursos do Machine Learning Studio (clássico). Até 31 de agosto de 2024, você pode continuar usando os recursos existentes do Machine Learning Studio (clássico).
- Confira informações sobre como mover projetos de machine learning do ML Studio (clássico) para o Azure Machine Learning.
- Saiba mais sobre o Azure Machine Learning.
A documentação do ML Studio (clássico) está sendo desativada e pode não ser atualizada no futuro.
Classificar dados usando o sistema de aprendizado de máquina Vowpal Wabbit a partir da interface da linha de comandos
categoria: Análise de Texto
Observação
aplica-se a: somente Machine Learning Studio (clássico)
Módulos semelhantes do tipo "arrastar e soltar" estão disponíveis no designer do Azure Machine Learning.
Visão geral do módulo
este artigo descreve como usar o módulo modelo de pontuação Vowpal Wabbit versão 7-4 no Machine Learning Studio (clássico), para gerar pontuações para um conjunto de dados de entrada, usando um modelo Vowpal Wabbit treinado existente.
Este módulo é fornecido para compatibilidade com a versão 7-4 da estrutura Vowpal Wabbit. Use este módulo somente se precisar pontuar dados usando um modelo treinado que foi salvo no formato 7-4.
Para criar um novo modelo VW, recomendamos que você use a versão mais recente::
Como configurar o modelo de Pontuação Vowpal Wabbit versão 7-4
Adicione o módulo modelo de Pontuação Vowpal Wabbit versão 7-4 ao experimento.
Adicione um modelo Vowpal Wabbit treinado e conecte-o à porta de entrada à esquerda. Você pode usar um modelo treinado criado no mesmo experimento ou localizar um modelo salvo no grupo de modelos treinados do painel de navegação esquerdo do Studio (clássico).
Restrições
o modelo deve estar disponível no Machine Learning Studio (clássico); você não pode carregar diretamente um modelo do armazenamento do Azure.
Há suporte apenas para modelos Vowpal Wabbit 7-4; Você não pode conectar modelos salvos que foram treinados usando outros algoritmos e não pode usar modelos que foram treinados usando versões posteriores.
Na caixa de texto Argumentos de VW, digite um conjunto de argumentos de linha de comando válidos para o executável do Vowpal Wabbit.
para obter informações sobre quais argumentos Vowpal Wabbit têm suporte no Machine Learning, consulte a seção observações técnicas .
Clique em especificar tipo de dadose selecione um dos tipos de dados com suporte na lista.
A pontuação requer uma única coluna de dados compatíveis com VW.
se você tiver um arquivo existente que foi criado nos formatos SVMLight ou VW, poderá carregá-lo no espaço de trabalho ML do Azure como um novo conjunto de um destes formatos: CSV genérico sem header, TSV sem cabeçalho.
A opção VW requer que um rótulo esteja presente, mas não é usado na pontuação, exceto por comparação.
Adicione um módulo importar dados e conecte-o à porta de entrada à direita de Pontuação Vowpal Wabbit versão 7-4. Configure o módulo importar dados para acessar os dados de entrada.
Os dados de entrada para Pontuação devem ter sido preparados antecipadamente em um dos formatos com suporte e armazenados no armazenamento de BLOBs do Azure.
Selecione a opção Incluir uma coluna extra que contém rótulos, se você quiser gerar rótulos junto com as pontuações.
Normalmente, ao manipular dados de texto, o Vowpal Wabbit não exige rótulos e retornará apenas as pontuações para cada linha de dados.
Selecione a opção usar resultados em cache, se você quiser reutilizar os resultados de uma execução anterior, supondo que as seguintes condições sejam atendidas:
Existe um cache válido de uma execução anterior.
As configurações de dados de entrada e parâmetros do módulo não foram alteradas desde a execução anterior.
Caso contrário, o processo de importação será repetido cada vez que o experimento for executado.
Execute o experimento.
Resultados
Após a conclusão do treinamento:
- Para visualizar os resultados, clique com o botão direito do mouse na saída do módulo de modelo Pontuação Vowpal Wabbit versão 7-4 .
A saída indica uma pontuação de previsão normalizada de 0 a 1.
Exemplos
Para obter exemplos de como o Vowpal Wabbit pode ser usado no aprendizado de máquina, consulte o Galeria de ia do Azure:
-
Este experimento demonstra a preparação de dados, o treinamento e a operacionalização de um modelo VW.
O vídeo a seguir fornece uma explicação do processo de treinamento e pontuação para Vowpal Wabbit:
Observações técnicas
Esta seção contém detalhes de implementação, dicas e respostas para perguntas frequentes.
Parâmetros compatíveis e incompatíveis
O Vowpal Wabbit tem muitas opções de linha de comando para escolher e ajustar algoritmos. Uma discussão completa sobre essas opções não é possível aqui; recomendamos que você exiba a Página Wiki Vowpal Wabbit.
os parâmetros a seguir não têm suporte no Machine Learning Studio (clássico).
As opções de entrada/saída especificadas em https://github.com/JohnLangford/vowpal_wabbit/wiki/Command-line-arguments
Essas propriedades já estão configuradas automaticamente pelo módulo.
Além disso, qualquer opção que gera várias saídas ou usa várias entradas não é permitida. Elas incluem
--cbt
,--lda
e--wap
.Há compatibilidade apenas com algoritmos de aprendizado supervisionados. Isso não permite estas opções:
–active
,--rank
,--search
etc.
Todos os argumentos que não sejam os descritos acima são permitidos.
Entradas esperadas
Nome | Tipo | Descrição |
---|---|---|
Modelo treinado | Interface ILearner | Aprendiz treinado |
Dataset | Tabela de Dados | Conjunto de dados a ser classificado |
Parâmetros do módulo
Nome | Intervalo | Type | Padrão | Descrição |
---|---|---|---|---|
Argumentos VW | Qualquer | String | Argumentos do tipo Vowpal Wabbit. Os seguintes argumentos não têm suporte: - -i - -p ou - -t |
|
Inclua uma coluna extra que contenha rótulos | Qualquer | Booliano | false | Especifique se o arquivo compactado deve incluir rótulos com as previsões |
Especifique o tipo de dados | VW SVMLight |
Tipo de dados | VW | Indica se o formato de arquivo é SVMLight ou Vowpal Wabbit |
Saídas
Nome | Tipo | Descrição |
---|---|---|
Conjunto de dados de resultados | Tabela de Dados | Conjunto de dados com os resultados da previsão |
Exceções
Exceção | Descrição |
---|---|
Erro 0001 | Ocorrerá uma exceção se uma ou mais das colunas especificadas do conjunto de dados não puder ser encontrada. |
Erro 0003 | Ocorrerá uma exceção se uma ou mais das entradas for nula ou estiver vazia. |
Erro 0004 | Ocorrerá uma exceção se o parâmetro for inferior ou igual ao valor específico. |
Erro 0017 | Ocorrerá uma exceção se uma ou mais das colunas especificadas tiver um tipo sem suporte por módulo atual. |
para obter uma lista de erros específicos para módulos do Studio (clássicos), consulte Machine Learning códigos de erro.
para obter uma lista de exceções de api, consulte Machine Learning códigos de erro da api REST.
Confira também
Análise de Texto
Hash de Recursos
Reconhecimento de entidade nomeada
Classificação Vowpal Wabbit
Treinar o modelo Vowpal Wabbit 7-4
Treinar o modelo Vowpal Wabbit 7-10
Lista de Módulo A-Z