Compartilhar via


Databricks Runtime 10.3 para ML (EoS)

Observação

O suporte para esta versão do Databricks Runtime foi encerrado. Para obter a data de fim do suporte, consulte o Histórico de fim do suporte. Para todas as versões compatíveis do Databricks Runtime, consulte Versões e compatibilidade de notas sobre a versão do Databricks Runtime.

O Databricks Runtime 10.3 para Machine Learning fornece um ambiente pronto para uso em aprendizado de máquina e ciência de dados com base no Databricks Runtime 10.3 (EoS). O Databricks Runtime ML contém muitas bibliotecas de aprendizado de máquina populares, inclusive TensorFlow, PyTorch e XGBoost. O Databricks Runtime ML inclui o AutoML, uma ferramenta para treinamento automático de pipelines de aprendizado de máquina. O Databricks Runtime ML também oferece suporte ao treinamento de aprendizado profundo distribuído com o uso do Horovod.

Para obter mais informações, incluindo instruções para criar um cluster de ML do Databricks Runtime, confira IA e Machine Learning no Databricks.

Novos recursos e aprimoramentos

O Databricks Runtime 10.3 ML foi criado com base no Databricks Runtime 10.3. Para obter informações sobre as novidades do Databricks Runtime 10.3, inclusive o Apache Spark MLlib e o SparkR, confira as notas de versão do Databricks Runtime 10.3 (EoS).

Aprimoramentos no AutoML

Os aprimoramentos a seguir foram feitos no AutoML.

O AutoML agora dá suporte ao modelo ARIMA de previsão

Além do Prophet, o AutoML agora cria e avalia modelos ARIMA para prever problemas.

Excluir colunas do conjunto de dados

Ao usar a API do AutoML, você pode especificar colunas que o AutoML deve ignorar durante os cálculos. Isso está disponível apenas para problemas de classificação e regressão. Consulte a referência da API do AutoML Python para obter detalhes.

Excluir estruturas de algoritmo de uma execução do AutoML

É possível especificar estruturas de algoritmos, como o scikit-learn, que o AutoML não deve considerar ao desenvolver modelos. Consulte Configurações avançadas e referência da API do AutoML Python para obter detalhes.

max_trials desativado

O parâmetro max_trials foi desativado e será removido na próxima versão principal do Databricks Runtime ML. Use timeout_minutes para controlar a duração de uma execução do AutoML. Além disso, no Databricks Runtime 10.1 ML e superior, o AutoML incorpora a parada antecipada; ele interromperá modelos de treinamento e de ajuste se a métrica de validação não estiver mais melhorando.

Aprimoramentos no Databricks Feature Store

Agora você pode aplicar as pesquisas pontuais a tabelas de recursos de série temporal. Consulte Suporte pontual usando tabelas de recursos de série temporal para obter detalhes.

Databricks Autologging (GA)

O Databricks Autologging agora está disponível para o público em geral no Databricks Runtime 10.3 ML. O Databricks Autologging é uma solução sem código que fornece acompanhamento automático de experimentos nas sessões de treinamento em aprendizado de máquina no Azure Databricks. Com o Databricks Autologging, parâmetros de modelos, métricas, arquivos e informações de linhagem são capturados automaticamente quando você treina modelos de várias bibliotecas de aprendizado de máquina populares. As sessões de treinamento são registradas como Execuções de Acompanhamento do MLflow. Os arquivos de modelo também são rastreados para que você possa registrá-los facilmente no Registro de Modelo do MLflow e implantá-los para pontuação em tempo real com o Serviço de Modelo do MLflow.

Confira Databricks Autologging para obter mais informações.

Ambiente do sistema

O ambiente do sistema no Databricks Runtime 10.3 ML é diferente do Databricks Runtime 10.3 nestes aspectos:

Bibliotecas

As seções a seguir listam as bibliotecas incluídas no Databricks Runtime 10.3 ML que diferem daquelas incluídas no Databricks Runtime 10.3.

Nesta seção:

Bibliotecas de camada superior

O Databricks Runtime 10.3 ML inclui as seguintes bibliotecas de camada superior:

Bibliotecas do Python

O Databricks Runtime 10.3 ML usa o Virtualenv para gerenciamento de pacotes do Python e inclui muitos pacotes de ML bastante populares.

Além dos pacotes especificados nas seções a seguir, o Databricks Runtime 10.3 ML também inclui os seguintes pacotes:

  • hyperopt 0.2.7.db1
  • sparkdl 2.2.0-db5
  • feature_store 0.3.7
  • automl 1.6.0

Bibliotecas do Python em clusters de CPU

Biblioteca Versão Biblioteca Versão Biblioteca Versão
absl-py 0.11.0 Antergos Linux 2015.10 (atualização cumulativa de ISO) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1,10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bidict 0.21.4 bleach 3.3.0
blis 0.7.4 boto3 1.16.7 botocore 1.19.7
cachetools 4.2.4 catalogue 2.0.6 certifi 2020.12.5
cffi 1.14.5 chardet 4.0.0 clique 7.1.2
cloudpickle 1.6.0 cmdstanpy 0.9.68 configparser 5.0.1
convertdate 2.3.2 criptografia 3.4.7 cycler 0.10.0
cymem 2.0.5 Cython 0.29.23 databricks-automl-runtime 0.2.5
databricks-cli 0.16.2 dbl-tempo 0.1.2 dbus-python 1.2.16
decorator 5.0.6 defusedxml 0.7.1 dill 0.3.2
diskcache 5.2.1 distlib 0.3.4 distro-info 0.23ubuntu1
entrypoints 0.3 ephem 4.1.3 facets-overview 1.0.0
fasttext 0.9.2 filelock 3.0.12 Flask 1.1.2
flatbuffers 2,0 fsspec 0.9.0 future 0.18.2
gast 0.4.0 gitdb 4.0.7 GitPython 3.1.12
google-auth 1.22.1 google-auth-oauthlib 0.4.2 google-pasta 0.2.0
grpcio 1.39.0 gunicorn 20.0.4 gviz-api 1.10.0
h5py 3.1.0 hijri-converter 2.2.2 feriados 0,12
horovod 0.23.0 htmlmin 0.1.12 huggingface-hub 0.1.2
idna 2.10 ImageHash 4.2.1 imbalanced-learn 0.8.1
importlib-metadata 3.10.0 ipykernel 5.3.4 ipython 7.22.0
ipython-genutils 0.2.0 ipywidgets 7.6.3 isodate 0.6.0
itsdangerous 1.1.0 jedi 0.17.2 Jinja2 2.11.3
jmespath 0.10.0 joblib 1.0.1 joblibspark 0.3.0
jsonschema 3.2.0 jupyter-client 6.1.12 jupyter-core 4.7.1
jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0 keras 2.7.0
Keras-Preprocessing 1.1.2 kiwisolver 1.3.1 koalas 1.8.2
korean-lunar-calendar 0.2.1 langcodes 3.3.0 libclang 12.0.0
lightgbm 3.3.1 llvmlite 0.38.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 2.0.1
matplotlib 3.4.2 missingno 0.5.0 mistune 0.8.4
mleap 0.18.1 mlflow-skinny 1.23.0 multimethod 1.6
murmurhash 1.0.5 nbclient 0.5.3 nbconvert 6.0.7
nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5
nltk 3.6.1 notebook 6.3.0 numba 0.55.0
numpy 1.20.1 oauthlib 3.1.0 opt-einsum 3.3.0
empacotando 21.3 pandas 1.2.4 pandas-profiling 3.1.0
pandocfilters 1.4.3 paramiko 2.7.2 parso 0.7.0
pathy 0.6.0 patsy 0.5.1 petastorm 0.11.3
pexpect 4.8.0 phik 0.12.0 pickleshare 0.7.5
Pillow 8.2.0 pip 21.0.1 plotly 5.5.0
pmdarima 1.8.4 preshed 3.0.5 prometheus-client 0.10.1
prompt-toolkit 3.0.17 prophet 1.0.1 protobuf 3.17.2
psutil 5.8.0 psycopg2 2.8.5 ptyprocess 0.7.0
pyarrow 4.0.0 pyasn1 0.4.8 pyasn1-modules 0.2.8
pybind11 2.9.0 pycparser 2,20 pydantic 1.8.2
Pygments 2.8.1 PyGObject 3.36.0 PyMeeus 0.5.11
PyNaCl 1.4.0 pyodbc 4.0.30 pyparsing 2.4.7
pyrsistent 0.17.3 pystan 2.19.1.1 python-apt 2.0.0+ubuntu0.20.4.6
python-dateutil 2.8.1 python-editor 1.0.4 python-engineio 4.3.0
python-socketio 5.4.1 pytz 2020.5 PyWavelets 1.1.1
PyYAML 5.4.1 pyzmq 20.0.0 regex 2021.4.4
solicitações 2.25.1 requests-oauthlib 1.3.0 requests-unixsocket 0.2.0
rsa 4.7.2 s3transfer 0.3.7 sacremoses 0.0.46
scikit-learn 0.24.1 scipy 1.6.2 seaborn 0.11.1
Send2Trash 1.5.0 setuptools 52.0.0 setuptools-git 1,2
shap 0.40.0 simplejson 3.17.2 six 1.15.0
slicer 0.0.7 smart-open 5.2.0 smmap 3.0.5
spacy 3.2.1 spacy-legacy 3.0.8 spacy-loggers 1.0.1
spark-tensorflow-distributor 1.0.0 sqlparse 0.4.1 srsly 2.4.1
ssh-import-id 5.10 statsmodels 0.12.2 tabulate 0.8.7
tangled-up-in-unicode 0.1.0 tenacity 6.2.0 tensorboard 2.7.0
tensorboard-data-server 0.6.1 tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.1
tensorflow-cpu 2.7.0 tensorflow-estimator 2.7.0 tensorflow-io-gcs-filesystem 0.23.1
termcolor 1.1.0 terminado 0.9.4 testpath 0.4.4
thinc 8.0.12 threadpoolctl 2.1.0 tokenizers 0.10.3
torch 1.10.1+cpu torchvision 0.11.2+cpu tornado 6.1
tqdm 4.59.0 traitlets 5.0.5 transformers 4.15.0
typer 0.3.2 typing-extensions 3.7.4.3 ujson 4.0.2
unattended-upgrades 0,1 urllib3 1.25.11 virtualenv 20.4.1
visions 0.7.4 wasabi 0.8.2 wcwidth 0.2.5
webencodings 0.5.1 websocket-client 0.57.0 Werkzeug 1.0.1
wheel 0.36.2 widgetsnbextension 3.5.1 wrapt 1.12.1
xgboost 1.5.1 zipp 3.4.1

Bibliotecas do Python em clusters de GPU

Biblioteca Versão Biblioteca Versão Biblioteca Versão
absl-py 0.11.0 Antergos Linux 2015.10 (atualização cumulativa de ISO) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1,10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bidict 0.21.4 bleach 3.3.0
blis 0.7.4 boto3 1.16.7 botocore 1.19.7
cachetools 4.2.4 catalogue 2.0.6 certifi 2020.12.5
cffi 1.14.5 chardet 4.0.0 clique 7.1.2
cloudpickle 1.6.0 cmdstanpy 0.9.68 configparser 5.0.1
convertdate 2.3.2 criptografia 3.4.7 cycler 0.10.0
cymem 2.0.5 Cython 0.29.23 databricks-automl-runtime 0.2.5
databricks-cli 0.16.2 dbl-tempo 0.1.2 dbus-python 1.2.16
decorator 5.0.6 defusedxml 0.7.1 dill 0.3.2
diskcache 5.2.1 distlib 0.3.4 distro-info 0.23ubuntu1
entrypoints 0.3 ephem 4.1.3 facets-overview 1.0.0
fasttext 0.9.2 filelock 3.0.12 Flask 1.1.2
flatbuffers 2,0 fsspec 0.9.0 future 0.18.2
gast 0.4.0 gitdb 4.0.7 GitPython 3.1.12
google-auth 1.22.1 google-auth-oauthlib 0.4.2 google-pasta 0.2.0
grpcio 1.39.0 gunicorn 20.0.4 gviz-api 1.10.0
h5py 3.1.0 hijri-converter 2.2.2 feriados 0,12
horovod 0.23.0 htmlmin 0.1.12 huggingface-hub 0.1.2
idna 2.10 ImageHash 4.2.1 imbalanced-learn 0.8.1
importlib-metadata 3.10.0 ipykernel 5.3.4 ipython 7.22.0
ipython-genutils 0.2.0 ipywidgets 7.6.3 isodate 0.6.0
itsdangerous 1.1.0 jedi 0.17.2 Jinja2 2.11.3
jmespath 0.10.0 joblib 1.0.1 joblibspark 0.3.0
jsonschema 3.2.0 jupyter-client 6.1.12 jupyter-core 4.7.1
jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0 keras 2.7.0
Keras-Preprocessing 1.1.2 kiwisolver 1.3.1 koalas 1.8.2
korean-lunar-calendar 0.2.1 langcodes 3.3.0 libclang 12.0.0
lightgbm 3.3.1 llvmlite 0.38.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 2.0.1
matplotlib 3.4.2 missingno 0.5.0 mistune 0.8.4
mleap 0.18.1 mlflow-skinny 1.23.0 multimethod 1.6
murmurhash 1.0.5 nbclient 0.5.3 nbconvert 6.0.7
nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5
nltk 3.6.1 notebook 6.3.0 numba 0.55.0
numpy 1.20.1 oauthlib 3.1.0 opt-einsum 3.3.0
empacotando 21.3 pandas 1.2.4 pandas-profiling 3.1.0
pandocfilters 1.4.3 paramiko 2.7.2 parso 0.7.0
pathy 0.6.0 patsy 0.5.1 petastorm 0.11.3
pexpect 4.8.0 phik 0.12.0 pickleshare 0.7.5
Pillow 8.2.0 pip 21.0.1 plotly 5.5.0
pmdarima 1.8.4 preshed 3.0.5 prompt-toolkit 3.0.17
prophet 1.0.1 protobuf 3.17.2 psutil 5.8.0
psycopg2 2.8.5 ptyprocess 0.7.0 pyarrow 4.0.0
pyasn1 0.4.8 pyasn1-modules 0.2.8 pybind11 2.9.0
pycparser 2,20 pydantic 1.8.2 Pygments 2.8.1
PyGObject 3.36.0 PyMeeus 0.5.11 PyNaCl 1.4.0
pyodbc 4.0.30 pyparsing 2.4.7 pyrsistent 0.17.3
pystan 2.19.1.1 python-apt 2.0.0+ubuntu0.20.4.6 python-dateutil 2.8.1
python-editor 1.0.4 python-engineio 4.3.0 python-socketio 5.4.1
pytz 2020.5 PyWavelets 1.1.1 PyYAML 5.4.1
pyzmq 20.0.0 regex 2021.4.4 solicitações 2.25.1
requests-oauthlib 1.3.0 requests-unixsocket 0.2.0 rsa 4.7.2
s3transfer 0.3.7 sacremoses 0.0.46 scikit-learn 0.24.1
scipy 1.6.2 seaborn 0.11.1 Send2Trash 1.5.0
setuptools 52.0.0 setuptools-git 1,2 shap 0.40.0
simplejson 3.17.2 six 1.15.0 slicer 0.0.7
smart-open 5.2.0 smmap 3.0.5 spacy 3.2.1
spacy-legacy 3.0.8 spacy-loggers 1.0.1 spark-tensorflow-distributor 1.0.0
sqlparse 0.4.1 srsly 2.4.1 ssh-import-id 5.10
statsmodels 0.12.2 tabulate 0.8.7 tangled-up-in-unicode 0.1.0
tenacity 6.2.0 tensorboard 2.7.0 tensorboard-data-server 0.6.1
tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.1 tensorflow 2.7.0
tensorflow-estimator 2.7.0 tensorflow-io-gcs-filesystem 0.23.1 termcolor 1.1.0
terminado 0.9.4 testpath 0.4.4 thinc 8.0.12
threadpoolctl 2.1.0 tokenizers 0.10.3 torch 1.10.1+cu111
torchvision 0.11.2+cu111 tornado 6.1 tqdm 4.59.0
traitlets 5.0.5 transformers 4.15.0 typer 0.3.2
typing-extensions 3.7.4.3 ujson 4.0.2 unattended-upgrades 0,1
urllib3 1.25.11 virtualenv 20.4.1 visions 0.7.4
wasabi 0.8.2 wcwidth 0.2.5 webencodings 0.5.1
websocket-client 0.57.0 Werkzeug 1.0.1 wheel 0.36.2
widgetsnbextension 3.5.1 wrapt 1.12.1 xgboost 1.5.1
zipp 3.4.1

Pacotes do Spark que contêm módulos do Python

Pacote do Spark Módulo do Python Versão
graphframes graphframes 0.8.2-db1-spark3.2

Bibliotecas do R

As bibliotecas do R são idênticas às Bibliotecas do R existentes no Databricks Runtime 10.3.

Bibliotecas do Java e do Scala (cluster do Scala 2.12)

Além das bibliotecas do Java e do Scala no Databricks Runtime 10.3, o Databricks Runtime 10.3 ML contém os seguintes JARs:

Clusters de CPU

ID do Grupo Artifact ID Versão
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-spark_2.12 1.5.1
ml.dmlc xgboost4j_2.12 1.5.1
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.23.0
org.mlflow mlflow-spark 1.23.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

Clusters de GPU

ID do Grupo Artifact ID Versão
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-spark_2.12 1.5.1
ml.dmlc xgboost4j_2.12 1.5.1
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.23.0
org.mlflow mlflow-spark 1.23.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0