SdcaMaximumEntropyMulticlassTrainer Klasa
Definicja
Ważne
Niektóre informacje odnoszą się do produktu w wersji wstępnej, który może zostać znacząco zmodyfikowany przed wydaniem. Firma Microsoft nie udziela żadnych gwarancji, jawnych lub domniemanych, w odniesieniu do informacji podanych w tym miejscu.
Element IEstimator<TTransformer> do przewidywania celu przy użyciu klasyfikatora wieloklasowego maksymalnej entropii. Wytrenowany model MaximumEntropyModelParameters generuje prawdopodobieństwa klas.
public sealed class SdcaMaximumEntropyMulticlassTrainer : Microsoft.ML.Trainers.SdcaMulticlassTrainerBase<Microsoft.ML.Trainers.MaximumEntropyModelParameters>
type SdcaMaximumEntropyMulticlassTrainer = class
inherit SdcaMulticlassTrainerBase<MaximumEntropyModelParameters>
Public NotInheritable Class SdcaMaximumEntropyMulticlassTrainer
Inherits SdcaMulticlassTrainerBase(Of MaximumEntropyModelParameters)
- Dziedziczenie
-
SdcaTrainerBase<SdcaMulticlassTrainerBase<TModel>.MulticlassOptions,MulticlassPredictionTransformer<TModel>,TModel>SdcaMaximumEntropyMulticlassTrainer
Uwagi
Aby utworzyć ten trener, użyj sdcaMaximumEntropy lub SdcaMaximumEntropy(Options).
Kolumny wejściowe i wyjściowe
Dane kolumny etykiety wejściowej muszą być typem klucza , a kolumna funkcji musi być znanym wektorem Single.
Ten trener generuje następujące kolumny:
Nazwa kolumny wyjściowej | Typ kolumny | Opis |
---|---|---|
Score |
Wektor Single | Wyniki wszystkich klas. Wyższa wartość oznacza wyższe prawdopodobieństwo, że należy do skojarzonej klasy. Jeśli element i-th ma największą wartość, przewidywany indeks etykiety to i. Należy pamiętać, że i jest indeksem opartym na zera. |
PredictedLabel |
typ klucza | Indeks przewidywanej etykiety. Jeśli jego wartość to i, rzeczywista etykieta będzie kategorią i-th w typie etykiety wejściowej wartości klucza. |
Cechy trenera
Zadanie uczenia maszynowego | Klasyfikacja wieloklasowa |
Czy normalizacja jest wymagana? | Tak |
Czy buforowanie jest wymagane? | Nie |
Wymagane narzędzie NuGet oprócz Microsoft.ML | Brak |
Eksportowanie do pliku ONNX | Tak |
Funkcja oceniania
Umożliwia to trenowanie modelu liniowego w celu rozwiązywania problemów z klasyfikacją wieloklasową. Załóżmy, że liczba klas jest $m$ i liczba funkcji jest $n$. Przypisuje $c$-th klasy wektor współczynnika $\textbf{w}_c \in {\mathbb R}^n$ i stronniczości $b_c \in {\mathbb R}$, dla $c=1,\kropki,m$. Biorąc pod uwagę wektor funkcji $\textbf{x} \in {\mathbb R}^n$, wynik klasy $c$-th będzie wynikiem $\tilde{P}(c | \textbf{x}) = \frac{ e^{\hat{y}^c} }{ \sum_{c' = 1}^m e^{\hat{y}{c'}} }$, gdzie $\hat{y}^c = \textbf{w}_c^T \textbf{x} + b_c$. Należy pamiętać, że $\tilde{P}(c | \textbf{x})$ to prawdopodobieństwo obserwowania $c$ klasy, gdy wektor funkcji to $\textbf{x}$.
Szczegóły algorytmu trenowania
Zapoznaj się z dokumentacją klasy SdcaMulticlassTrainerBase.
Zapoznaj się z sekcją Zobacz również, aby uzyskać linki do przykładów użycia.
Pola
FeatureColumn |
Kolumna funkcji, której oczekuje trener. (Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Kolumna etykiety, którą oczekuje trener. Może to być |
WeightColumn |
Kolumna wagi, którą oczekuje trener. Może to być |
Właściwości
Info |
Element IEstimator<TTransformer> do przewidywania celu przy użyciu klasyfikatora wieloklasowego maksymalnej entropii. Wytrenowany model MaximumEntropyModelParameters generuje prawdopodobieństwa klas. (Odziedziczone po StochasticTrainerBase<TTransformer,TModel>) |
Metody
Fit(IDataView) |
Trenuje i zwraca wartość ITransformer. (Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Element IEstimator<TTransformer> do przewidywania celu przy użyciu klasyfikatora wieloklasowego maksymalnej entropii. Wytrenowany model MaximumEntropyModelParameters generuje prawdopodobieństwa klas. (Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>) |
Metody rozszerzania
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Dołącz punkt kontrolny buforowania do łańcucha narzędzia do szacowania. Zapewni to, że narzędzia do szacowania podrzędnego zostaną wytrenowane względem buforowanych danych. Warto mieć punkt kontrolny buforowania, zanim trenerzy przejmą wiele danych. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Biorąc pod uwagę narzędzie do szacowania, zwróć obiekt opakowujący, który wywoła delegata po Fit(IDataView) wywołaniu. Często ważne jest, aby narzędzie do szacowania zwracało informacje o tym, co było odpowiednie, dlatego Fit(IDataView) metoda zwraca specjalnie wpisany obiekt, a nie tylko ogólną ITransformerwartość . Jednak w tym samym czasie IEstimator<TTransformer> często są tworzone w potoki z wieloma obiektami, więc może być konieczne utworzenie łańcucha narzędzi do szacowania za pośrednictwem EstimatorChain<TLastTransformer> miejsca, w którym narzędzie do szacowania, dla którego chcemy uzyskać transformator jest pochowany gdzieś w tym łańcuchu. W tym scenariuszu możemy za pomocą tej metody dołączyć delegata, który zostanie wywołany po wywołaniu dopasowania. |
Dotyczy
Zobacz też
- SdcaMaximumEntropy(MulticlassClassificationCatalog+MulticlassClassificationTrainers, SdcaMaximumEntropyMulticlassTrainer+Options)
- SdcaMaximumEntropy(MulticlassClassificationCatalog+MulticlassClassificationTrainers, String, String, String, Nullable<Single>, Nullable<Single>, Nullable<Int32>)
- SdcaMaximumEntropyMulticlassTrainer.Options