Udostępnij za pośrednictwem


Dokumentacja narzędzi usługi Databricks (dbutils)

Ten artykuł zawiera odniesienia do narzędzi usługi Databricks (dbutils). Narzędzia udostępniają polecenia, które umożliwiają pracę ze środowiskiem usługi Databricks z notesów. Można na przykład zarządzać plikami i magazynem obiektów oraz pracować z danymi poufnymi. dbutils są dostępne w notatnikach Python, R i Scala.

Uwaga

dbutils Obsługuje tylko środowiska obliczeniowe korzystające z systemu plików DBFS.

moduły użytkowe

W poniższej tabeli wymieniono moduły Databricks Utilities, które można pobrać przy użyciu dbutils.help().

Moduł Opis
danych Narzędzia do zrozumienia zestawów danych i interakcji z nimi (EKSPERYMENTALNE)
fs Narzędzia do uzyskiwania dostępu do systemu plików usługi Databricks (DBFS)
zadań Narzędzia do korzystania z funkcji zadań
biblioteki Przestarzałe. Narzędzia do zarządzania bibliotekami o sesyjnym zakresie
notatnik Narzędzia do zarządzania przepływem sterowania w notatnikach (EKSPERYMENTALNE)
tajemnice Narzędzia do korzystania z wpisów tajnych w notesach
widżety Narzędzia do sparametryzowania notesów.
api Narzędzia do zarządzania kompilacjami aplikacji

Pomoc dotycząca poleceń

Aby wyświetlić listę poleceń dla modułu narzędziowego wraz z krótkim opisem każdego polecenia, dołącz .help() po nazwie modułu narzędziowego. W poniższym przykładzie wymieniono dostępne polecenia dla narzędzia notesu:

dbutils.notebook.help()
The notebook module.

exit(value: String): void -> This method lets you exit a notebook with a value
run(path: String, timeoutSeconds: int, arguments: Map): String -> This method runs a notebook and returns its exit value

Aby uzyskać pomoc dotyczącą polecenia, uruchom polecenie dbutils.<utility-name>.help("<command-name>"). Poniższy przykład przedstawia pomoc dotyczącą polecenia kopiowania narzędzi systemu plików, dbutils.fs.cp:

dbutils.fs.help("cp")
/**
* Copies a file or directory, possibly across FileSystems.
*
* Example: cp("/mnt/my-folder/a", "dbfs:/a/b")
*
* @param from FileSystem URI of the source file or directory
* @param to FileSystem URI of the destination file or directory
* @param recurse if true, all files and directories will be recursively copied
* @return true if all files were successfully copied
*/
cp(from: java.lang.String, to: java.lang.String, recurse: boolean = false): boolean

Narzędzie danych (dbutils.data)

Ważne

Ta funkcja jest dostępna w publicznej wersji zapoznawczej.

Uwaga

Dostępne w środowisku Databricks Runtime 9.0 lub nowszym.

Narzędzie do obsługi danych umożliwia zrozumienie zestawów danych i interakcję z nimi.

W poniższej tabeli wymieniono dostępne polecenia dla tego narzędzia, które można pobrać przy użyciu dbutils.data.help().

Polecenie Opis
podsumuj Podsumowanie ramki danych platformy Spark i wizualizowanie statystyk w celu uzyskania szybkich szczegółowych informacji

summarize — polecenie (dbutils.data.summarize)

Uwaga

Ta funkcja jest dostępna w publicznej wersji zapoznawczej.

summarize(df: Object, precise: boolean): void

Oblicza i wyświetla podsumowanie statystyk ramki danych platformy Apache Spark lub ramki danych pandas. To polecenie jest dostępne dla języków Python, Scala i R.

Ważne

To polecenie analizuje pełną zawartość ramki danych. Uruchomienie tego polecenia dla bardzo dużych ramek danych może być bardzo kosztowne.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.data.help("summarize")

W środowisku Databricks Runtime 10.4 LTS i nowszym można użyć dodatkowego precise parametru, aby dostosować dokładność obliczonych statystyk.

  • Gdy precise jest ustawiona wartość false (wartość domyślna), niektóre zwrócone statystyki obejmują przybliżenia w celu skrócenia czasu wykonywania.
    • Liczba unikatowych wartości kolumn kategorii może mieć błąd względny ok. 5% dla kolumn o wysokiej kardynalności.
    • Częste liczby wartości mogą mieć błąd do 0,01%, gdy liczba unikatowych wartości jest większa niż 10000.
    • Histogramy i oszacowania percentylu mogą zawierać błąd do 0,01% względem całkowitej liczby wierszy.
  • Gdy precise jest ustawiona wartość true, statystyki są obliczane z wyższą precyzją. Wszystkie statystyki z wyjątkiem histogramów i percentyli dla kolumn liczbowych są teraz dokładne.
    • Histogramy i oszacowania percentylu mogą zawierać błąd do 0,0001% względem całkowitej liczby wierszy.

Etykietka narzędzia w górnej części danych wyjściowych podsumowania danych wskazuje tryb bieżącego uruchomienia.

Przykład

W tym przykładzie wyświetlane są statystyki podsumowania ramki danych platformy Apache Spark z domyślnie włączonymi przybliżeniami. Aby wyświetlić wyniki, uruchom to polecenie w notesie. Ten przykład jest oparty na przykładowych zestawach danych.

Python
df = spark.read.format('csv').load(
  '/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv',
  header=True,
  inferSchema=True
)
dbutils.data.summarize(df)
R
df <- read.df("/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv", source = "csv", header="true", inferSchema = "true")
dbutils.data.summarize(df)
Scala
val df = spark.read.format("csv")
  .option("inferSchema", "true")
  .option("header", "true")
  .load("/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv")
dbutils.data.summarize(df)

Wizualizacja używa notacji SI do zwięzłego renderowania wartości liczbowych mniejszych niż 0,01 lub większych niż 10000. Na przykład wartość 1.25e-15 liczbowa będzie renderowana jako 1.25f. Jeden wyjątek: wizualizacja używa znaku "B" dla 1.0e9 (giga) zamiast "G".

Narzędzie systemu plików (dbutils.fs)

Narzędzie systemu plików umożliwia dostęp do systemu plików Co to jest system plików DBFS?, co ułatwia korzystanie z usługi Azure Databricks jako systemu plików.

Ostrzeżenie

Implementacja języka Python wszystkich dbutils.fs metod używa snake_case zamiast camelCase formatowania słów kluczowych.

Na przykład dbutils.fs.help() wyświetla opcję extraConfigs .dbutils.fs.mount() Jednak w języku Python należy użyć słowa kluczowego extra_configs.

W poniższej tabeli wymieniono dostępne polecenia dla tego narzędzia, które można pobrać przy użyciu dbutils.fs.help().

Polecenie Opis
cp Kopiuje plik lub katalog, być może między różnymi systemami plików
głowica Zwraca do pierwszych bajtów "maxBytes" danego pliku jako ciąg zakodowany w formacie UTF-8
ls Wyświetla zawartość katalogu
mkdirs Tworzy dany katalog, jeśli nie istnieje, tworząc również niezbędne katalogi nadrzędne
mocowanie Montuje dany katalog źródłowy w systemie plików DBFS w danym punkcie montowania.
montuje Wyświetla informacje o tym, co jest instalowane w systemie plików DBFS
mv Przenosi plik lub katalog, prawdopodobnie pomiędzy różnymi systemami plików
umieścić Zapisuje podany ciąg w pliku zakodowanym w formacie UTF-8
refreshMounts Wymusza odświeżenie pamięci podręcznej instalacji przez wszystkie maszyny w tym klastrze, zapewniając, że otrzymają najnowsze informacje
rm Usuwa plik lub katalog
odmontować Usuwa punkt instalacji systemu plików DBFS
aktualizujMontowanie Podobnie jak w przypadku instalacji(), ale aktualizuje istniejący punkt instalacji zamiast tworzyć nowy

Napiwek

W notesach możesz użyć %fs polecenia magic, aby uzyskać dostęp do systemu plików DBFS. Na przykład kod %fs ls /Volumes/main/default/my-volume/ jest taki sam jak kod dbutils.fs.ls("/Volumes/main/default/my-volume/"). Zobacz polecenia magiczne.

cp — polecenie (dbutils.fs.cp)

cp(from: String, to: String, recurse: boolean = false): boolean

Kopiuje plik lub katalog, prawdopodobnie w systemach plików.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("cp")

Przykład

Ten przykład kopiuje plik o nazwie data.csv z /Volumes/main/default/my-volume/ do new-data.csv w tym samym woluminie.

Python
dbutils.fs.cp("/Volumes/main/default/my-volume/data.csv", "/Volumes/main/default/my-volume/new-data.csv")

# Out[4]: True
R
dbutils.fs.cp("/Volumes/main/default/my-volume/data.csv", "/Volumes/main/default/my-volume/new-data.csv")

# [1] TRUE
Scala
dbutils.fs.cp("/Volumes/main/default/my-volume/data.csv", "/Volumes/main/default/my-volume/new-data.csv")

// res3: Boolean = true

head command (dbutils.fs.head)

head(file: String, maxBytes: int = 65536): String

Zwraca maksymalną liczbę bajtów w danym pliku. Bajty są zwracane jako ciąg zakodowany w formacie UTF-8.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("head")

Przykład

W tym przykładzie jest wyświetlanych pierwszych 25 bajtów pliku data.csv znajdującego się w /Volumes/main/default/my-volume/pliku .

Python
dbutils.fs.head("/Volumes/main/default/my-volume/data.csv", 25)

# [Truncated to first 25 bytes]
# Out[12]: 'Year,First Name,County,Se'
R
dbutils.fs.head("/Volumes/main/default/my-volume/data.csv", 25)

# [1] "Year,First Name,County,Se"
Scala
dbutils.fs.head("/Volumes/main/default/my-volume/data.csv", 25)

// [Truncated to first 25 bytes]
// res4: String =
// "Year,First Name,County,Se"

polecenie ls (dbutils.fs.ls)

ls(dir: String): Seq

Wyświetla zawartość katalogu.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("ls")

Przykład

W tym przykładzie są wyświetlane informacje o zawartości elementu /Volumes/main/default/my-volume/. Pole modificationTime jest dostępne w środowisku Databricks Runtime 10.4 LTS lub nowszym. W języku R modificationTime jest zwracany jako ciąg.

Python
dbutils.fs.ls("/Volumes/main/default/my-volume/")

# Out[13]: [FileInfo(path='dbfs:/Volumes/main/default/my-volume/data.csv', name='data.csv', size=2258987, modificationTime=1711357839000)]
R
dbutils.fs.ls("/Volumes/main/default/my-volume/")

# For prettier results from dbutils.fs.ls(<dir>), please use `%fs ls <dir>`

# [[1]]
# [[1]]$path
# [1] "/Volumes/main/default/my-volume/data.csv"

# [[1]]$name
# [1] "data.csv"

# [[1]]$size
# [1] 2258987

# [[1]]$isDir
# [1] FALSE

# [[1]]$isFile
# [1] TRUE

# [[1]]$modificationTime
# [1] "1711357839000"
Scala
dbutils.fs.ls("/tmp")

// res6: Seq[com.databricks.backend.daemon.dbutils.FileInfo] = WrappedArray(FileInfo(/Volumes/main/default/my-volume/data.csv, 2258987, 1711357839000))

mkdirs — polecenie (dbutils.fs.mkdirs)

mkdirs(dir: String): boolean

Tworzy dany katalog, jeśli nie istnieje. Tworzy również wszelkie niezbędne katalogi nadrzędne.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("mkdirs")

Przykład

W tym przykładzie zostanie utworzony katalog my-data w programie /Volumes/main/default/my-volume/.

Python
dbutils.fs.mkdirs("/Volumes/main/default/my-volume/my-data")

# Out[15]: True
R
dbutils.fs.mkdirs("/Volumes/main/default/my-volume/my-data")

# [1] TRUE
Scala
dbutils.fs.mkdirs("/Volumes/main/default/my-volume/my-data")

// res7: Boolean = true

mount command (dbutils.fs.mount)

mount(source: String, mountPoint: String, encryptionType: String = "", owner: String = null, extraConfigs: Map = Map.empty[String, String]): boolean

Instaluje określony katalog źródłowy w systemie plików DBFS w określonym punkcie instalacji.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("mount")

Przykład

Python
dbutils.fs.mount(
  source = "wasbs://<container-name>@<storage-account-name>.blob.core.windows.net",
  mount_point = "/mnt/<mount-name>",
  extra_configs = {"<conf-key>":dbutils.secrets.get(scope = "<scope-name>", key = "<key-name>")})
Scala
dbutils.fs.mount(
  source = "wasbs://<container-name>@<storage-account-name>.blob.core.windows.net/<directory-name>",
  mountPoint = "/mnt/<mount-name>",
  extraConfigs = Map("<conf-key>" -> dbutils.secrets.get(scope = "<scope-name>", key = "<key-name>")))

Aby uzyskać dodatkowe przykłady kodu, zobacz Nawiązywanie połączenia z usługą Azure Data Lake Storage Gen2 i usługą Blob Storage.

polecenie mounts (dbutils.fs.mounts)

mounts: Seq

Wyświetla informacje o tym, co jest obecnie zainstalowane w systemie plików DBFS.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("mounts")

Przykład

Ostrzeżenie

Wywołaj dbutils.fs.refreshMounts() wszystkie inne uruchomione klastry, aby propagować nową instalację. Zobacz polecenie refreshMounts (dbutils.fs.refreshMounts).

Python
dbutils.fs.mounts()
Scala
dbutils.fs.mounts()

Aby uzyskać dodatkowe przykłady kodu, zobacz Nawiązywanie połączenia z usługą Azure Data Lake Storage Gen2 i usługą Blob Storage.

mv , polecenie (dbutils.fs.mv)

mv(from: String, to: String, recurse: boolean = false): boolean

Przenosi plik lub katalog, prawdopodobnie w systemach plików. Przeniesienie to kopia, po której następuje usunięcie, nawet w przypadku przenoszenia w systemach plików.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("mv")

Przykład

W tym przykładzie plik rows.csv jest przenosiny z /Volumes/main/default/my-volume/ do ./Volumes/main/default/my-volume/my-data/

Python
dbutils.fs.mv("/Volumes/main/default/my-volume/rows.csv", "/Volumes/main/default/my-volume/my-data/")

# Out[2]: True
R
dbutils.fs.mv("/Volumes/main/default/my-volume/rows.csv", "/Volumes/main/default/my-volume/my-data/")

# [1] TRUE
Scala
dbutils.fs.mv("/Volumes/main/default/my-volume/rows.csv", "/Volumes/main/default/my-volume/my-data/")

// res1: Boolean = true

put — polecenie (dbutils.fs.put)

put(file: String, contents: String, overwrite: boolean = false): boolean

Zapisuje określony ciąg w pliku. Ciąg jest zakodowany w formacie UTF-8.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("put")

Przykład

W tym przykładzie ciąg Hello, Databricks! jest zapisywany w pliku o nazwie hello.txt w /Volumes/main/default/my-volume/pliku . Jeśli plik istnieje, zostanie zastąpiony.

Python
dbutils.fs.put("/Volumes/main/default/my-volume/hello.txt", "Hello, Databricks!", True)

# Wrote 2258987 bytes.
# Out[6]: True
R
dbutils.fs.put("/Volumes/main/default/my-volume/hello.txt", "Hello, Databricks!", TRUE)

# [1] TRUE
Scala
dbutils.fs.put("/Volumes/main/default/my-volume/hello.txt", "Hello, Databricks!", true)

// Wrote 2258987 bytes.
// res2: Boolean = true

refreshMounts — polecenie (dbutils.fs.refreshMounts)

refreshMounts: boolean

Wymusza odświeżenie pamięci podręcznej instalacji przez wszystkie maszyny w klastrze, zapewniając, że otrzymają najnowsze informacje.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("refreshMounts")

Przykład

Python
dbutils.fs.refreshMounts()
Scala
dbutils.fs.refreshMounts()

Aby zapoznać się z przykładami kodu dodatkowego, zobacz Connect to Azure Data Lake Storage Gen2 and Blob Storage (Łączenie z usługą Azure Data Lake Storage Gen2 i usługą Blob Storage).

rm — polecenie (dbutils.fs.rm)

rm(dir: String, recurse: boolean = false): boolean

Usuwa plik lub katalog i, opcjonalnie, całą jego zawartość. Jeśli określono plik, recurse parametr jest ignorowany. Jeśli zostanie określony katalog, wystąpi błąd, gdy recurse jest wyłączony, a katalog nie jest pusty.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("rm")

Przykład

W tym przykładzie usunięto cały katalog /Volumes/main/default/my-volume/my-data/ wraz z jego zawartością.

Python
dbutils.fs.rm("/Volumes/main/default/my-volume/my-data/", True)

# Out[8]: True
R
dbutils.fs.rm("/Volumes/main/default/my-volume/my-data/", TRUE)

# [1] TRUE
Scala
dbutils.fs.rm("/Volumes/main/default/my-volume/my-data/", true)

// res6: Boolean = true

unmount — polecenie (dbutils.fs.unmount)

unmount(mountPoint: String): boolean

Usuwa punkt instalacji systemu plików DBFS.

Ostrzeżenie

Aby uniknąć błędów, nigdy nie modyfikuj punktu instalacji, podczas gdy inne zadania odczytują lub zapisują w nim. Po zmodyfikowaniu instalacji zawsze uruchamiaj na dbutils.fs.refreshMounts() wszystkich innych uruchomionych klastrach, aby propagować wszystkie aktualizacje instalacji. Zobacz polecenie refreshMounts (dbutils.fs.refreshMounts).

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("unmount")

Przykład

dbutils.fs.unmount("/mnt/<mount-name>")

Aby uzyskać dodatkowe przykłady kodu, zobacz Nawiązywanie połączenia z usługą Azure Data Lake Storage Gen2 i usługą Blob Storage.

updateMount — polecenie (dbutils.fs.updateMount)

updateMount(source: String, mountPoint: String, encryptionType: String = "", owner: String = null, extraConfigs: Map = Map.empty[String, String]): boolean

Podobnie jak w przypadku dbutils.fs.mount polecenia , ale aktualizuje istniejący punkt instalacji zamiast tworzyć nowe. Zwraca błąd, jeśli punkt instalacji nie istnieje.

Ostrzeżenie

Aby uniknąć błędów, nigdy nie modyfikuj punktu instalacji, podczas gdy inne zadania odczytują lub zapisują w nim. Po zmodyfikowaniu instalacji zawsze uruchamiaj na dbutils.fs.refreshMounts() wszystkich innych uruchomionych klastrach, aby propagować wszystkie aktualizacje instalacji. Zobacz polecenie refreshMounts (dbutils.fs.refreshMounts).

To polecenie jest dostępne w środowisku Databricks Runtime 10.4 LTS i nowszym.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.fs.help("updateMount")

Przykład

Python
dbutils.fs.updateMount(
  source = "wasbs://<container-name>@<storage-account-name>.blob.core.windows.net",
  mount_point = "/mnt/<mount-name>",
  extra_configs = {"<conf-key>":dbutils.secrets.get(scope = "<scope-name>", key = "<key-name>")})
Scala
dbutils.fs.updateMount(
  source = "wasbs://<container-name>@<storage-account-name>.blob.core.windows.net/<directory-name>",
  mountPoint = "/mnt/<mount-name>",
  extraConfigs = Map("<conf-key>" -> dbutils.secrets.get(scope = "<scope-name>", key = "<key-name>")))

Narzędzie zadań (dbutils.jobs)

Udostępnia narzędzia do wykorzystywania funkcji zadań.

Uwaga

To narzędzie jest dostępne tylko dla języka Python.

W poniższej tabeli wymieniono dostępne moduły dla tego narzędzia, które można pobrać przy użyciu dbutils.jobs.help().

Moduł podrzędny Opis
taskValues Udostępnia narzędzia do korzystania z wartości zadań

podrzędność taskValues (dbutils.jobs.taskValues)

Uwaga

To podzadanie jest dostępne tylko dla języka Python.

Udostępnia polecenia służące do korzystania z wartości zadań zadania.

To narzędzie podrzędne służy do ustawiania i pobierania dowolnych wartości podczas uruchamiania zadania. Te wartości są nazywane wartościami zadań. Każde zadanie może pobierać wartości skonfigurowane przez zadania nadrzędne i ustawiać wartości podrzędnych zadań podrzędnych do użycia.

Każda wartość zadania ma unikatowy klucz w ramach tego samego zadania. Ten unikatowy klucz jest nazywany kluczem wartości zadania. Dostęp do wartości zadania jest uzyskiwany przy użyciu nazwy zadania i klucza wartości zadania. Służy to do przekazywania informacji podrzędnych z zadania do zadania w ramach tego samego uruchomienia zadania. Można na przykład przekazać identyfikatory lub metryki, takie jak informacje o ocenie modelu uczenia maszynowego, między różnymi zadaniami w ramach przebiegu zadania.

W poniższej tabeli wymieniono dostępne polecenia dla tego podnarzędzia, które można pobrać za pomocą dbutils.jobs.taskValues.help().

Polecenie Opis
pobierz Pobiera zawartość określonej wartości zadania dla określonego zadania w bieżącym uruchomieniu zadania.
zestaw Ustawia lub aktualizuje wartość zadania. Dla uruchomienia zadania można skonfigurować maksymalnie 250 wartości zadań.

get command (dbutils.jobs.taskValues.get)

Uwaga

To polecenie jest dostępne tylko dla języka Python.

W środowisku Databricks Runtime 10.4 lub starszym, jeśli get nie można odnaleźć zadania, zostanie zgłoszony błąd Py4JavaError zamiast ValueError.

get(taskKey: String, key: String, default: int, debugValue: int): Seq

Pobiera zawartość określonej wartości zadania dla określonego zadania w bieżącym uruchomieniu zadania.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.jobs.taskValues.help("get")

Przykład

Na przykład:

dbutils.jobs.taskValues.get(taskKey    = "my-task", \
                            key        = "my-key", \
                            default    = 7, \
                            debugValue = 42)

W powyższym przykładzie:

  • taskKey to nazwa zadania, które ustawia wartość zadania. Jeśli polecenie nie może odnaleźć tego zadania, zostanie zgłoszony element ValueError .
  • key to nazwa klucza wartości zadania ustawionego za pomocą polecenia set (dbutils.jobs.taskValues.set). Jeśli polecenie nie może odnaleźć klucza tej wartości zadania, element ValueError zostanie zgłoszony (chyba że default zostanie określony).
  • default jest opcjonalną wartością zwracaną, jeśli key nie można jej odnaleźć. default nie może być None.
  • debugValue jest opcjonalną wartością zwracaną w przypadku próby pobrania wartości zadania z poziomu notesu uruchomionego poza zadaniem. Może to być przydatne podczas debugowania, gdy chcesz ręcznie uruchomić notes i zwrócić pewną wartość zamiast domyślnie podnieść TypeError . debugValue nie może być None.

Jeśli spróbujesz uzyskać wartość zadania z poziomu notesu uruchomionego poza zadaniem, to polecenie domyślnie TypeError zgłasza wartość . Jeśli debugValue jednak argument jest określony w poleceniu, wartość debugValue jest zwracana zamiast podnosić TypeErrorwartość .

set — polecenie (dbutils.jobs.taskValues.set)

Uwaga

To polecenie jest dostępne tylko dla języka Python.

set(key: String, value: String): boolean

Ustawia lub aktualizuje wartość zadania. Dla uruchomienia zadania można skonfigurować maksymalnie 250 wartości zadań.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.jobs.taskValues.help("set")

Przykład

Przykłady obejmują:

dbutils.jobs.taskValues.set(key   = "my-key", \
                            value = 5)

dbutils.jobs.taskValues.set(key   = "my-other-key", \
                            value = "my other value")

W poprzednich przykładach:

  • key jest kluczem wartości zadania. Ten klucz musi być unikatowy dla zadania. Oznacza to, że jeśli dwa różne zadania ustawiają wartość zadania z kluczem K, są to dwie różne wartości zadań, które mają ten sam klucz K.
  • value jest wartością klucza tej wartości zadania. To polecenie musi być w stanie reprezentować wartość wewnętrznie w formacie JSON. Rozmiar reprezentacji JSON wartości nie może przekraczać 48 KiB.

Jeśli spróbujesz ustawić wartość zadania z poziomu notesu uruchomionego poza zadaniem, to polecenie nie wykonuje żadnych czynności.

Narzędzie biblioteki (dbutils.library)

Większość metod w module podrzędnym dbutils.library jest przestarzała. Zobacz Narzędzie biblioteki (dbutils.library) (starsza wersja).

Może być konieczne programowe ponowne uruchomienie procesu języka Python w usłudze Azure Databricks, aby upewnić się, że lokalnie zainstalowane lub uaktualnione biblioteki działają poprawnie w jądrze języka Python dla bieżącej usługi SparkSession. W tym celu uruchom polecenie dbutils.library.restartPython. Zobacz Ponowne uruchamianie procesu języka Python w usłudze Azure Databricks.

Narzędzie notesu (dbutils.notebook)

Narzędzie notesu umożliwia łączenie notesów i wykonywanie działań na ich podstawie. Zobacz Uruchamianie notesu usługi Databricks z innego notesu.

W poniższej tabeli wymieniono dostępne polecenia dla tego narzędzia, które można pobrać przy użyciu dbutils.notebook.help().

Polecenie Opis
wyjście Zamyka notatnik z wartością
uruchom Uruchamia notebook i zwraca kod jego zakończenia

exit — polecenie (dbutils.notebook.exit)

exit(value: String): void

Zamyka notes z wartością.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.notebook.help("exit")

Przykład

W tym przykładzie notes kończy się z wartością Exiting from My Other Notebook.

Python
dbutils.notebook.exit("Exiting from My Other Notebook")

# Notebook exited: Exiting from My Other Notebook
R
dbutils.notebook.exit("Exiting from My Other Notebook")

# Notebook exited: Exiting from My Other Notebook
Scala
dbutils.notebook.exit("Exiting from My Other Notebook")

// Notebook exited: Exiting from My Other Notebook

Uwaga

Jeśli uruchomienie ma zapytanie ze strukturą strumieniową uruchomioną w tle, wywołanie dbutils.notebook.exit() nie kończy przebiegu. Przebieg będzie nadal wykonywany tak długo, jak zapytanie jest wykonywane w tle. Zapytanie uruchomione w tle można zatrzymać, klikając przycisk Anuluj w komórce zapytania lub uruchamiając polecenie query.stop(). Po zatrzymaniu zapytania można zakończyć przebieg za pomocą polecenia dbutils.notebook.exit().

run — polecenie (dbutils.notebook.run)

run(path: String, timeoutSeconds: int, arguments: Map): String

Uruchamia notes i zwraca jego wartość zakończenia. Notes będzie domyślnie uruchamiany w bieżącym klastrze.

Uwaga

Maksymalna długość wartości ciągu zwróconej z run polecenia wynosi 5 MB. Zobacz Pobieranie danych wyjściowych dla pojedynczego przebiegu (GET /jobs/runs/get-output).

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.notebook.help("run")

Przykład

W tym przykładzie jest uruchamiany notes o nazwie My Other Notebook w tej samej lokalizacji co notes wywołujący. Nazwany notes kończy się wierszem kodu dbutils.notebook.exit("Exiting from My Other Notebook"). Jeśli wywoływany notes nie zakończy działania w ciągu 60 sekund, zostanie zgłoszony wyjątek.

Python
dbutils.notebook.run("My Other Notebook", 60)

# Out[14]: 'Exiting from My Other Notebook'
Scala
dbutils.notebook.run("My Other Notebook", 60)

// res2: String = Exiting from My Other Notebook

Narzędzie Secrets (dbutils.secrets)

Narzędzie wpisy tajne umożliwia przechowywanie poufnych informacji o poświadczeniach i uzyskiwanie do nich dostępu bez ich widoczności w notesach. Zobacz Zarządzanie wpisami tajnymi i Krok 3. Używanie wpisów tajnych w notesie.

W poniższej tabeli wymieniono dostępne polecenia dla tego narzędzia, które można pobrać przy użyciu dbutils.secrets.help().

Polecenie Opis
uzyskać Pobiera ciąg reprezentujący wartość wpisu tajnego z zakresem i kluczem
getBytes Pobiera bajtową reprezentację tajnej wartości z zakresem i kluczem
lista Wyświetla metadane tajemnic w określonym zakresie
listScopes Wyświetla listę tajnych zakresów

get — polecenie (dbutils.secrets.get)

get(scope: String, key: String): String

Pobiera ciąg reprezentujący wartość wpisu tajnego dla określonego zakresu i klucza wpisów tajnych.

Ostrzeżenie

Administratorzy, twórcy wpisów tajnych i użytkownicy, którym udzielono uprawnień , mogą odczytywać wpisy tajne usługi Azure Databricks. Chociaż usługa Azure Databricks stara się redagować wartości wpisów tajnych, które mogą być wyświetlane w notesach, nie można uniemożliwić takim użytkownikom odczytywania wpisów tajnych. Aby uzyskać więcej informacji, zobacz Ponowne redagowanie wpisów tajnych.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.secrets.help("get")

Przykład

W tym przykładzie jest pobierana reprezentacja ciągu wartości wpisu tajnego dla zakresu o nazwie i klucza o nazwie my-scopemy-key.

Python
dbutils.secrets.get(scope="my-scope", key="my-key")

# Out[14]: '[REDACTED]'
R
dbutils.secrets.get(scope="my-scope", key="my-key")

# [1] "[REDACTED]"
Scala
dbutils.secrets.get(scope="my-scope", key="my-key")

// res0: String = [REDACTED]

getBytes — polecenie (dbutils.secrets.getBytes)

getBytes(scope: String, key: String): byte[]

Pobiera reprezentację bajtów wartości wpisu tajnego dla określonego zakresu i klucza.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.secrets.help("getBytes")

Przykład

W tym przykładzie jest pobierana reprezentacja bajtów wartości wpisu tajnego (w tym przykładzie a1!b2@c3#) dla zakresu o nazwie i klucza o nazwie my-scopemy-key.

Python
dbutils.secrets.getBytes(scope="my-scope", key="my-key")

# Out[1]: b'a1!b2@c3#'
R
dbutils.secrets.getBytes(scope="my-scope", key="my-key")

# [1] 61 31 21 62 32 40 63 33 23
Scala
dbutils.secrets.getBytes(scope="my-scope", key="my-key")

// res1: Array[Byte] = Array(97, 49, 33, 98, 50, 64, 99, 51, 35)

list — polecenie (dbutils.secrets.list)

list(scope: String): Seq

Wyświetla metadane dla wpisów tajnych w określonym zakresie.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.secrets.help("list")

Przykład

W tym przykładzie wymieniono metadane dla wpisów tajnych w zakresie o nazwie my-scope.

Python
dbutils.secrets.list("my-scope")

# Out[10]: [SecretMetadata(key='my-key')]
R
dbutils.secrets.list("my-scope")

# [[1]]
# [[1]]$key
# [1] "my-key"
Scala
dbutils.secrets.list("my-scope")

// res2: Seq[com.databricks.dbutils_v1.SecretMetadata] = ArrayBuffer(SecretMetadata(my-key))

listScopes — polecenie (dbutils.secrets.listScopes)

listScopes: Seq

Wyświetla listę dostępnych zakresów.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.secrets.help("listScopes")

Przykład

W tym przykładzie wymieniono dostępne zakresy.

Python
dbutils.secrets.listScopes()

# Out[14]: [SecretScope(name='my-scope')]
R
dbutils.secrets.listScopes()

# [[1]]
# [[1]]$name
# [1] "my-scope"
Scala
dbutils.secrets.listScopes()

// res3: Seq[com.databricks.dbutils_v1.SecretScope] = ArrayBuffer(SecretScope(my-scope))

Narzędzie Widgets (dbutils.widgets)

Narzędzie widgets umożliwia sparametryzowanie notesów. Zobacz Widżety usługi Databricks.

W poniższej tabeli wymieniono dostępne polecenia dla tego narzędzia, które można pobrać przy użyciu dbutils.widgets.help().

Polecenie Opis
pole kombi Tworzy widżet wejściowy pola rozwijanego z daną nazwą, wartością domyślną i opcjami.
rozwijana lista Tworzy widżet wejściowy listy rozwijanej o danej nazwie, wartości domyślnej i opcjach
uzyskaj Pobiera bieżącą wartość widżetu wejściowego
getAll Pobiera mapę wszystkich nazw widżetów i ich wartości
getArgument Przestarzałe. Równoważny do pobrania
wielokrotny wybór Tworzy widżet wejściowy wielokrotnego wyboru o podanej nazwie, wartości domyślnej i opcjach
usuń Usuwa widżet wejściowy z notesu
usuńWszystkie Usuwa wszystkie widżety w notesie
tekst Tworzy widżet wprowadzania tekstu o podanej nazwie i wartości domyślnej

combobox — polecenie (dbutils.widgets.combobox)

combobox(name: String, defaultValue: String, choices: Seq, label: String): void

Tworzy i wyświetla widżet pola kombi z określoną nazwą programową, wartością domyślną, opcjami i opcjonalną etykietą.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("combobox")

Przykład

W tym przykładzie zostanie utworzony i wyświetlony widżet pola kombi o nazwie fruits_comboboxprogramowej . Oferuje on opcje apple, banana, coconuti dragon fruit i jest ustawiona na początkową wartość banana. Ten widżet kombi ma dołączącą etykietę Fruits. Ten przykład kończy się drukowaniem początkowej wartości widżetu kombibox, banana.

Python
dbutils.widgets.combobox(
  name='fruits_combobox',
  defaultValue='banana',
  choices=['apple', 'banana', 'coconut', 'dragon fruit'],
  label='Fruits'
)

print(dbutils.widgets.get("fruits_combobox"))

# banana
R
dbutils.widgets.combobox(
  name='fruits_combobox',
  defaultValue='banana',
  choices=list('apple', 'banana', 'coconut', 'dragon fruit'),
  label='Fruits'
)

print(dbutils.widgets.get("fruits_combobox"))

# [1] "banana"
Scala
dbutils.widgets.combobox(
  "fruits_combobox",
  "banana",
  Array("apple", "banana", "coconut", "dragon fruit"),
  "Fruits"
)

print(dbutils.widgets.get("fruits_combobox"))

// banana
SQL
CREATE WIDGET COMBOBOX fruits_combobox DEFAULT "banana" CHOICES SELECT * FROM (VALUES ("apple"), ("banana"), ("coconut"), ("dragon fruit"))

SELECT :fruits_combobox

-- banana

dropdown — polecenie (dbutils.widgets.dropdown)

dropdown(name: String, defaultValue: String, choices: Seq, label: String): void

Tworzy i wyświetla widżet listy rozwijanej z określoną nazwą programową, wartością domyślną, opcjami i opcjonalną etykietą.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("dropdown")

Przykład

W tym przykładzie zostanie utworzony i wyświetlony widżet listy rozwijanej o nazwie toys_dropdownprogramowej . Oferuje on opcje alphabet blocks, basketball, capei doll i jest ustawiona na początkową wartość basketball. Ten widżet listy rozwijanej ma etykietę towarzyszącą Toys. Ten przykład kończy się drukowaniem początkowej wartości widżetu listy rozwijanej . basketball

Python
dbutils.widgets.dropdown(
  name='toys_dropdown',
  defaultValue='basketball',
  choices=['alphabet blocks', 'basketball', 'cape', 'doll'],
  label='Toys'
)

print(dbutils.widgets.get("toys_dropdown"))

# basketball
R
dbutils.widgets.dropdown(
  name='toys_dropdown',
  defaultValue='basketball',
  choices=list('alphabet blocks', 'basketball', 'cape', 'doll'),
  label='Toys'
)

print(dbutils.widgets.get("toys_dropdown"))

# [1] "basketball"
Scala
dbutils.widgets.dropdown(
  "toys_dropdown",
  "basketball",
  Array("alphabet blocks", "basketball", "cape", "doll"),
  "Toys"
)

print(dbutils.widgets.get("toys_dropdown"))

// basketball
SQL
CREATE WIDGET DROPDOWN toys_dropdown DEFAULT "basketball" CHOICES SELECT * FROM (VALUES ("alphabet blocks"), ("basketball"), ("cape"), ("doll"))

SELECT :toys_dropdown

-- basketball

get — polecenie (dbutils.widgets.get)

get(name: String): String

Pobiera bieżącą wartość widżetu z określoną nazwą programową. Ta nazwa programowa może być następująca:

  • Nazwa niestandardowego widżetu w notesie, na przykład fruits_combobox lub toys_dropdown.
  • Nazwa parametru niestandardowego przekazanego do notesu w ramach zadania notesu, na przykład name lub age. Aby uzyskać więcej informacji, zobacz pokrycie parametrów dla zadań notesu POST /jobs/run-now zadań.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("get")

Przykład

W tym przykładzie jest pobierana wartość widżetu o nazwie fruits_comboboxprogramowej .

Python
dbutils.widgets.get('fruits_combobox')

# banana
R
dbutils.widgets.get('fruits_combobox')

# [1] "banana"
Scala
dbutils.widgets.get("fruits_combobox")

// res6: String = banana
SQL
SELECT :fruits_combobox

-- banana

W tym przykładzie jest pobierana wartość parametru zadania notesu o nazwie ageprogramowej . Ten parametr został ustawiony na 35 czas uruchomienia powiązanego zadania notesu.

Python
dbutils.widgets.get('age')

# 35
R
dbutils.widgets.get('age')

# [1] "35"
Scala
dbutils.widgets.get("age")

// res6: String = 35
SQL
SELECT :age

-- 35

getAll — polecenie (dbutils.widgets.getAll)

getAll: map

Pobiera mapowanie wszystkich bieżących nazw i wartości widżetów. Może to być szczególnie przydatne, aby szybko przekazywać wartości widżetów spark.sql() do zapytania.

To polecenie jest dostępne w środowisku Databricks Runtime 13.3 LTS lub nowszym. Jest on dostępny tylko dla języków Python i Scala.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("getAll")

Przykład

W tym przykładzie jest pobierana mapa wartości widżetu i przekazuje ją jako argumenty parametrów w zapytaniu Spark SQL.

Python
df = spark.sql("SELECT * FROM table where col1 = :param", dbutils.widgets.getAll())
df.show()

# Query output
Scala
val df = spark.sql("SELECT * FROM table where col1 = :param", dbutils.widgets.getAll())
df.show()

// res6: Query output

getArgument — polecenie (dbutils.widgets.getArgument)

getArgument(name: String, optional: String): String

Pobiera bieżącą wartość widżetu z określoną nazwą programową. Jeśli widżet nie istnieje, można zwrócić opcjonalny komunikat.

Uwaga

To polecenie jest przestarzałe. Zamiast tego użyj polecenia dbutils.widgets.get .

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("getArgument")

Przykład

W tym przykładzie jest pobierana wartość widżetu o nazwie fruits_comboboxprogramowej . Jeśli ten widżet nie istnieje, zostanie zwrócony komunikat Error: Cannot find fruits combobox .

Python
dbutils.widgets.getArgument('fruits_combobox', 'Error: Cannot find fruits combobox')

# Deprecation warning: Use dbutils.widgets.text() or dbutils.widgets.dropdown() to create a widget and dbutils.widgets.get() to get its bound value.
# Out[3]: 'banana'
R
dbutils.widgets.getArgument('fruits_combobox', 'Error: Cannot find fruits combobox')

# Deprecation warning: Use dbutils.widgets.text() or dbutils.widgets.dropdown() to create a widget and dbutils.widgets.get() to get its bound value.
# [1] "banana"
Scala
dbutils.widgets.getArgument("fruits_combobox", "Error: Cannot find fruits combobox")

// command-1234567890123456:1: warning: method getArgument in trait WidgetsUtils is deprecated: Use dbutils.widgets.text() or dbutils.widgets.dropdown() to create a widget and dbutils.widgets.get() to get its bound value.
// dbutils.widgets.getArgument("fruits_combobox", "Error: Cannot find fruits combobox")
//                 ^
// res7: String = banana

polecenie multiselect (dbutils.widgets.multiselect)

multiselect(name: String, defaultValue: String, choices: Seq, label: String): void

Tworzy i wyświetla widżet wielokrotnego wyboru z określoną nazwą programową, wartością domyślną, wyborami i opcjonalną etykietą.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("multiselect")

Przykład

W tym przykładzie zostanie utworzony i wyświetlony widżet wielokrotnego wyboru o nazwie days_multiselectprogramowej . Oferuje on opcje wyboru Monday za pomocą Sunday parametru i jest ustawiony na początkową wartość Tuesday. Ten widżet wielokrotnego wyboru ma etykietę towarzyszącą Days of the Week. Ten przykład kończy się drukowaniem początkowej wartości widżetu wielokrotnego wyboru. Tuesday

Python
dbutils.widgets.multiselect(
  name='days_multiselect',
  defaultValue='Tuesday',
  choices=['Monday', 'Tuesday', 'Wednesday', 'Thursday',
    'Friday', 'Saturday', 'Sunday'],
  label='Days of the Week'
)

print(dbutils.widgets.get("days_multiselect"))

# Tuesday
R
dbutils.widgets.multiselect(
  name='days_multiselect',
  defaultValue='Tuesday',
  choices=list('Monday', 'Tuesday', 'Wednesday', 'Thursday',
    'Friday', 'Saturday', 'Sunday'),
  label='Days of the Week'
)

print(dbutils.widgets.get("days_multiselect"))

# [1] "Tuesday"
Scala
dbutils.widgets.multiselect(
  "days_multiselect",
  "Tuesday",
  Array("Monday", "Tuesday", "Wednesday", "Thursday",
    "Friday", "Saturday", "Sunday"),
  "Days of the Week"
)

print(dbutils.widgets.get("days_multiselect"))

// Tuesday
SQL
CREATE WIDGET MULTISELECT days_multiselect DEFAULT "Tuesday" CHOICES SELECT * FROM (VALUES ("Monday"), ("Tuesday"), ("Wednesday"), ("Thursday"), ("Friday"), ("Saturday"), ("Sunday"))

SELECT :days_multiselect

-- Tuesday

remove — polecenie (dbutils.widgets.remove)

remove(name: String): void

Usuwa widżet z określoną nazwą programową.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("remove")

Ważne

Jeśli dodasz polecenie w celu usunięcia widżetu, nie możesz dodać kolejnego polecenia w celu utworzenia widżetu w tej samej komórce. Widżet należy utworzyć w innej komórce.

Przykład

W tym przykładzie widżet zostanie usunięty z nazwą fruits_comboboxprogramową .

Python
dbutils.widgets.remove('fruits_combobox')
R
dbutils.widgets.remove('fruits_combobox')
Scala
dbutils.widgets.remove("fruits_combobox")
SQL
REMOVE WIDGET fruits_combobox

removeAll — polecenie (dbutils.widgets.removeAll)

removeAll: void

Usuwa wszystkie widżety z notesu.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("removeAll")

Ważne

Jeśli dodasz polecenie w celu usunięcia wszystkich widżetów, nie można dodać kolejnego polecenia w celu utworzenia żadnych widżetów w tej samej komórce. Musisz utworzyć widżety w innej komórce.

Przykład

Ten przykład usuwa wszystkie widżety z notesu.

Python
dbutils.widgets.removeAll()
R
dbutils.widgets.removeAll()
Scala
dbutils.widgets.removeAll()

text — polecenie (dbutils.widgets.text)

text(name: String, defaultValue: String, label: String): void

Tworzy i wyświetla widżet tekstowy z określoną nazwą programową, wartością domyślną i opcjonalną etykietą.

Aby wyświetlić pełną pomoc dotyczącą tego polecenia, uruchom polecenie:

dbutils.widgets.help("text")

Przykład

W tym przykładzie zostanie utworzony i wyświetlony widżet tekstowy o nazwie your_name_textprogramowej . Jest ona ustawiona na początkową wartość Enter your name. Ten widżet tekstu ma etykietę towarzyszącą Your name. Ten przykład kończy się drukowaniem początkowej wartości widżetu tekstowego . Enter your name

Python
dbutils.widgets.text(
  name='your_name_text',
  defaultValue='Enter your name',
  label='Your name'
)

print(dbutils.widgets.get("your_name_text"))

# Enter your name
R
dbutils.widgets.text(
  name='your_name_text',
  defaultValue='Enter your name',
  label='Your name'
)

print(dbutils.widgets.get("your_name_text"))

# [1] "Enter your name"
Scala
dbutils.widgets.text(
  "your_name_text",
  "Enter your name",
  "Your name"
)

print(dbutils.widgets.get("your_name_text"))

// Enter your name
SQL
CREATE WIDGET TEXT your_name_text DEFAULT "Enter your name"

SELECT :your_name_text

-- Enter your name

Biblioteka interfejsu API narzędzi usługi Databricks

Ważne

Biblioteka interfejsu API narzędzi Databricks (dbutils-api) została oznaczona jako przestarzała. Usługa Databricks zaleca użycie jednej z następujących bibliotek:

Aby przyspieszyć tworzenie aplikacji, warto kompilować, kompilować i testować aplikacje przed ich wdrożeniem jako zadania produkcyjne. Aby umożliwić kompilowanie na platformie Databricks Utilities, usługa Databricks udostępnia bibliotekę dbutils-api . Bibliotekę dbutils-api można pobrać ze strony internetowej interfejsu API DBUtils w witrynie internetowej repozytorium Maven lub dołączyć bibliotekę, dodając zależność do pliku kompilacji:

  • SBT

    libraryDependencies += "com.databricks" % "dbutils-api_TARGET" % "VERSION"
    
  • Maven

    <dependency>
        <groupId>com.databricks</groupId>
        <artifactId>dbutils-api_TARGET</artifactId>
        <version>VERSION</version>
    </dependency>
    
  • Gradle

    compile 'com.databricks:dbutils-api_TARGET:VERSION'
    

Zastąp TARGET żądany element docelowy (na przykład 2.12) i VERSION odpowiednią wersją (na przykład 0.0.5). Aby uzyskać listę dostępnych obiektów docelowych i wersji, zobacz stronę internetową interfejsu API DBUtils w witrynie internetowej repozytorium Maven.

Po skompiluj aplikację dla tej biblioteki, możesz wdrożyć aplikację.

Ważne

Biblioteka dbutils-api pozwala tylko lokalnie skompilować aplikację, która używa dbutilsmetody , a nie do jej uruchamiania. Aby uruchomić aplikację, należy ją wdrożyć w usłudze Azure Databricks.

Ograniczenia

Wywoływanie dbutils wewnątrz funkcji wykonawczych może spowodować nieoczekiwane wyniki lub błędy.

Jeśli musisz uruchamiać operacje systemu plików na funkcjach wykonawczych przy użyciu programu dbutils, zapoznaj się z metodami równoległego wyświetlania i usuwania przy użyciu platformy Spark w temacie Jak szybciej wyświetlać i usuwać pliki w usłudze Databricks.

Aby uzyskać informacje o funkcjach wykonawczych, zobacz Omówienie trybu klastra w witrynie internetowej platformy Apache Spark.