Delen via


Databricks Runtime 7.0 ML (EoS)

Notitie

Ondersteuning voor deze Databricks Runtime-versie is beëindigd. Zie de geschiedenis van einde van ondersteuning voor de einddatum van de ondersteuning. Zie de releaseversies en compatibiliteit van Databricks Runtime voor alle ondersteunde Databricks Runtime-versies.

Databricks heeft deze versie uitgebracht in juni 2020.

Databricks Runtime 7.0 voor Machine Learning biedt een kant-en-klare omgeving voor machine learning en gegevenswetenschap op basis van Databricks Runtime 7.0 (EoS). Databricks Runtime ML bevat veel populaire machine learning-bibliotheken, waaronder TensorFlow, PyTorch en XGBoost. Het biedt ook ondersteuning voor gedistribueerde deep learning-training met behulp van Horovod.

Zie AI en machine learning op Databricks voor meer informatie, inclusief instructies voor het maken van een Databricks Runtime ML-cluster.

Nieuwe functies en belangrijke wijzigingen

Databricks Runtime 7.0 ML is gebouwd op basis van Databricks Runtime 7.0. Zie de releaseopmerkingen van Databricks Runtime 7.0, waaronder Apache Spark MLlib en SparkR, voor informatie over wat er nieuw is in Databricks Runtime 7.0 (EoS ).

GPU-bewuste planning

Databricks Runtime 7.0 ML biedt ondersteuning voor GPU-compatibele planning van Apache Spark 3.0. Azure Databricks configureert deze automatisch voor u. Zie GPU-planning.

Belangrijke wijzigingen in ML Python-omgeving

In deze sectie worden de belangrijkste wijzigingen in de vooraf geïnstalleerde ML Python-omgeving in vergelijking met Databricks Runtime 6.6 ML (EoS) beschreven. U moet ook de belangrijkste wijzigingen in de Python-basisomgeving in Databricks Runtime 7.0 (EoS) bekijken. Zie Python-bibliotheken voor een volledige lijst met geïnstalleerde Python-pakketten en hun versies.

Python-pakketten bijgewerkt

  • tensorflow 1.15.0 -> 2.2.0
  • tensorboard 1.15.0 -> 2.2.2
  • pytorch 1.4.0 -> 1.5.0
  • xgboost 0.90 -> 1.1.1
  • sparkdl 1.6.0-db1 -> 2.1.0-db1
  • hyperopt 0.2.2.db1 -> 0.2.4.db1

Python-pakketten toegevoegd

  • lightgbm: 2.3.0
  • nltk: 3.4.5
  • petastorm: 0.9.2
  • plotly: 4.5.2

Python-pakketten verwijderd

  • argparse
  • boto (gebruik boto3 in plaats daarvan)
  • colorama
  • deprecated
  • et-xmlfile
  • fusepy
  • html5lib
  • jdcal
  • keras (gebruik tensorflow.keras in plaats daarvan)
  • keras-applications (gebruik tensorflow.keras.applications in plaats daarvan)
  • llvmlite
  • lxml
  • neus
  • neus-uitsluiten
  • numba
  • openpyxl
  • pathlib2
  • Ply
  • pymongo
  • singledispatch
  • tensorboardX (gebruik torch.utils.tensorboard in plaats daarvan)
  • virtualenv
  • webencodings

Belangrijke wijzigingen in ML R-omgeving

Databricks Runtime 7.0 ML bevat een ongewijzigde versie van RStudio Server Open Source v1.2.5033 waarvoor de broncode kan worden gevonden in GitHub. Lees meer over RStudio Server in Azure Databricks.

Wijzigingen in ML Spark-pakketten, Java- en Scala-bibliotheken

De volgende pakketten worden bijgewerkt. Sommige worden bijgewerkt naar SNAPSHOT releases die compatibel zijn met Apache Spark 3.0:

  • graphframes: 0.7.0-db1-spark2.4 -> 0.8.0-db2-spark3.0
  • spark-tensorflow-connector: 1.15.0 (Scala 2.11) -> 1.15.0 (Scala 2.12)
  • xgboost4j en xgboost4j-spark: 0.90 -> 1.0.0
  • mleap-databricks-runtime: 0.17.0-4882dc3 (SNAPSHOT)

De volgende pakketten worden verwijderd:

  • TensorFlow (Java)
  • TensorFrames
  • Deep Learning-pijplijnen voor Apache Spark (HorovodRunner is beschikbaar in Python)

Conda- en pip-opdrachten toegevoegd ter ondersteuning van Python-bibliotheken met notebookbereik (openbare preview)

Vanaf Databricks Runtime 7.0 ML kunt %pip u Python-bibliotheken beheren die zijn geïnstalleerd in een notebooksessie.%conda U kunt deze opdrachten ook gebruiken om een aangepaste omgeving voor een notebook te maken en deze omgeving tussen notebooks te reproduceren. Als u deze functie wilt inschakelen, stelt u in clusterinstellingen de Spark-configuratie spark.databricks.conda.condaMagic.enabled truein. Zie Python-bibliotheken met notebookbereik voor meer informatie.

Afschaffingen en niet-ondersteunde functies

Databricks Runtime 7.0 ML biedt geen ondersteuning voor toegangsbeheer voor tabellen. Als u toegangsbeheer voor tabellen nodig hebt, raden we u aan Databricks Runtime 7.0 te gebruiken.

Bekende problemen

  • Als u een MLlib-model in mleap-indeling aanmeldt, mislukt het argument met een AttributeError wanneer het sample_input argument wordt doorgegeven mlflow.spark.log_model . Dit probleem wordt veroorzaakt door een API-wijziging in mleap. Als u dit probleem wilt omzeilen, voert u een upgrade uit naar MLflow 1.9.0. U kunt MLflow 1.9.0 installeren met behulp van Python-bibliotheken met notebookbereik.

Systeemomgeving

De systeemomgeving in Databricks Runtime 7.0 ML verschilt als volgt van Databricks Runtime 7.0:

Bibliotheken

In de volgende secties worden de bibliotheken vermeld die zijn opgenomen in Databricks Runtime 7.0 ML die verschillen van de bibliotheken die zijn opgenomen in Databricks Runtime 7.0.

In deze sectie:

Bibliotheken met de hoogste laag

Databricks Runtime 7.0 ML bevat de volgende bibliotheken met de hoogste laag:

Python-bibliotheken

Databricks Runtime 7.0 ML maakt gebruik van Conda voor Python-pakketbeheer en bevat veel populaire ML-pakketten. In de volgende sectie wordt de Conda-omgeving voor Databricks Runtime 7.0 ML beschreven.

Python op CPU-clusters

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.9.0=py37_0
  - asn1crypto=1.3.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_1
  - blas=1.0=mkl
  - blinker=1.4=py37_0
  - boto3=1.12.0=py_0
  - botocore=1.15.0=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2020.1.1=0
  - cachetools=4.1.0=py_1
  - certifi=2020.4.5.1=py37_0
  - cffi=1.14.0=py37h2e261b9_0
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=1.3.0=py_0
  - configparser=3.7.4=py37_0
  - cpuonly=1.0=0
  - cryptography=2.8=py37h1ba5d50_0
  - cycler=0.10.0=py37_0
  - cython=0.29.15=py37he6710b0_0
  - decorator=4.4.1=py_0
  - dill=0.3.1.1=py37_1
  - docutils=0.15.2=py37_0
  - entrypoints=0.3=py37_0
  - flask=1.1.1=py_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.18.2=py37_1
  - gast=0.3.3=py_0
  - gitdb2=2.0.6=py_0
  - gitpython=3.0.5=py_0
  - google-auth=1.11.2=py_0
  - google-auth-oauthlib=0.4.1=py_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.27.2=py37hf8bcb03_0
  - gunicorn=20.0.4=py37_0
  - h5py=2.10.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.8=py37_0
  - intel-openmp=2020.0=166
  - ipykernel=5.1.4=py37h39e3cac_0
  - ipython=7.12.0=py37h5ca1d4c_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py37_0
  - jedi=0.14.1=py37_0
  - jinja2=2.11.1=py_0
  - jmespath=0.9.4=py_0
  - joblib=0.14.1=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.3.4=py37_0
  - jupyter_core=4.6.1=py37_0
  - kiwisolver=1.1.0=py37he6710b0_0
  - krb5=1.16.4=h173b8e3_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_0
  - lightgbm=2.3.0=py37he6710b0_0
  - lz4-c=1.8.1.2=h14c3975_0
  - mako=1.1.2=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - matplotlib-base=3.1.3=py37hef1b27d_0
  - mkl=2020.0=166
  - mkl-service=2.3.0=py37he904b0f_0
  - mkl_fft=1.0.15=py37ha843d7b_0
  - mkl_random=1.1.0=py37hd6b4f25_0
  - ncurses=6.2=he6710b0_1
  - networkx=2.4=py_0
  - ninja=1.9.0=py37hfd86e86_0
  - nltk=3.4.5=py37_0
  - numpy=1.18.1=py37h4f9e942_0
  - numpy-base=1.18.1=py37hde5b4d6_1
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py37_0
  - openssl=1.1.1g=h7b6447c_0
  - packaging=20.1=py_0
  - pandas=1.0.1=py37h0573a6f_0
  - paramiko=2.7.1=py_0
  - parso=0.5.2=py_0
  - patsy=0.5.1=py37_0
  - pexpect=4.8.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=7.0.0=py37hb39fc2d_0
  - pip=20.0.2=py37_3
  - plotly=4.5.2=py_0
  - prompt_toolkit=3.0.3=py_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.7=py37h7b6447c_0
  - psycopg2=2.8.4=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.7=py_0
  - pycparser=2.19=py37_0
  - pygments=2.5.2=py_0
  - pyjwt=1.7.1=py37_0
  - pynacl=1.3.0=py37h7b6447c_0
  - pyodbc=4.0.30=py37he6710b0_0
  - pyopenssl=19.1.0=py37_0
  - pyparsing=2.4.6=py_0
  - pysocks=1.7.1=py37_0
  - python=3.7.6=h0371630_2
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytorch=1.5.0=py3.7_cpu_0
  - pytz=2019.3=py_0
  - pyzmq=18.1.1=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.22.0=py37_1
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py37_2
  - rsa=4.0=py_0
  - s3transfer=0.3.3=py37_0
  - scikit-learn=0.22.1=py37hd81dba3_0
  - scipy=1.4.1=py37h0b6359f_0
  - setuptools=45.2.0=py37_0
  - simplejson=3.17.0=py37h7b6447c_0
  - six=1.14.0=py37_0
  - smmap2=2.0.5=py37_0
  - sqlite=3.31.1=h62c20be_1
  - sqlparse=0.3.0=py_0
  - statsmodels=0.11.0=py37h7b6447c_0
  - tabulate=0.8.3=py37_0
  - tk=8.6.8=hbc83047_0
  - torchvision=0.6.0=py37_cpu
  - tornado=6.0.3=py37h7b6447c_3
  - tqdm=4.42.1=py_0
  - traitlets=4.3.3=py37_0
  - unixodbc=2.3.7=h14c3975_0
  - urllib3=1.25.8=py37_0
  - wcwidth=0.1.8=py_0
  - websocket-client=0.56.0=py37_0
  - werkzeug=1.0.0=py_0
  - wheel=0.34.2=py37_0
  - wrapt=1.11.2=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - astunparse==1.6.3
    - databricks-cli==0.11.0
    - diskcache==4.1.0
    - docker==4.2.1
    - gorilla==0.3.0
    - horovod==0.19.1
    - hyperopt==0.2.4.db1
    - keras-preprocessing==1.1.2
    - mleap==0.16.0
    - mlflow==1.8.0
    - opt-einsum==3.2.1
    - petastorm==0.9.2
    - pyarrow==0.15.1
    - pyyaml==5.3.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - sparkdl==2.1.0-db1
    - tensorboard==2.2.2
    - tensorboard-plugin-wit==1.6.0.post3
    - tensorflow-cpu==2.2.0
    - tensorflow-estimator==2.2.0
    - termcolor==1.1.0
    - xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml

Python op GPU-clusters

name: databricks-ml-gpu
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.9.0=py37_0
  - asn1crypto=1.3.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_1
  - blas=1.0=mkl
  - blinker=1.4=py37_0
  - boto3=1.12.0=py_0
  - botocore=1.15.0=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2020.1.1=0
  - cachetools=4.1.0=py_1
  - certifi=2020.4.5.2=py37_0
  - cffi=1.14.0=py37h2e261b9_0
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=1.3.0=py_0
  - configparser=3.7.4=py37_0
  - cryptography=2.8=py37h1ba5d50_0
  - cudatoolkit=10.1.243=h6bb024c_0
  - cycler=0.10.0=py37_0
  - cython=0.29.15=py37he6710b0_0
  - decorator=4.4.1=py_0
  - dill=0.3.1.1=py37_1
  - docutils=0.15.2=py37_0
  - entrypoints=0.3=py37_0
  - flask=1.1.1=py_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.18.2=py37_1
  - gast=0.3.3=py_0
  - gitdb2=2.0.6=py_0
  - gitpython=3.0.5=py_0
  - google-auth=1.11.2=py_0
  - google-auth-oauthlib=0.4.1=py_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.27.2=py37hf8bcb03_0
  - gunicorn=20.0.4=py37_0
  - h5py=2.10.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.8=py37_0
  - intel-openmp=2020.0=166
  - ipykernel=5.1.4=py37h39e3cac_0
  - ipython=7.12.0=py37h5ca1d4c_0
  - ipython_genutils=0.2.0=py37_0
  - itsdangerous=1.1.0=py37_0
  - jedi=0.14.1=py37_0
  - jinja2=2.11.1=py_0
  - jmespath=0.9.4=py_0
  - joblib=0.14.1=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.3.4=py37_0
  - jupyter_core=4.6.1=py37_0
  - kiwisolver=1.1.0=py37he6710b0_0
  - krb5=1.16.4=h173b8e3_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_0
  - lightgbm=2.3.0=py37he6710b0_0
  - lz4-c=1.8.1.2=h14c3975_0
  - mako=1.1.2=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - matplotlib-base=3.1.3=py37hef1b27d_0
  - mkl=2020.0=166
  - mkl-service=2.3.0=py37he904b0f_0
  - mkl_fft=1.0.15=py37ha843d7b_0
  - mkl_random=1.1.0=py37hd6b4f25_0
  - ncurses=6.2=he6710b0_1
  - networkx=2.4=py_0
  - ninja=1.9.0=py37hfd86e86_0
  - nltk=3.4.5=py37_0
  - numpy=1.18.1=py37h4f9e942_0
  - numpy-base=1.18.1=py37hde5b4d6_1
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py37_0
  - openssl=1.1.1g=h7b6447c_0
  - packaging=20.1=py_0
  - pandas=1.0.1=py37h0573a6f_0
  - paramiko=2.7.1=py_0
  - parso=0.5.2=py_0
  - patsy=0.5.1=py37_0
  - pexpect=4.8.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=7.0.0=py37hb39fc2d_0
  - pip=20.0.2=py37_3
  - plotly=4.5.2=py_0
  - prompt_toolkit=3.0.3=py_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.7=py37h7b6447c_0
  - psycopg2=2.8.4=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.7=py_0
  - pycparser=2.19=py37_0
  - pygments=2.5.2=py_0
  - pyjwt=1.7.1=py37_0
  - pynacl=1.3.0=py37h7b6447c_0
  - pyodbc=4.0.30=py37he6710b0_0
  - pyopenssl=19.1.0=py37_0
  - pyparsing=2.4.6=py_0
  - pysocks=1.7.1=py37_0
  - python=3.7.6=h0371630_2
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytorch=1.5.0=py3.7_cuda10.1.243_cudnn7.6.3_0
  - pytz=2019.3=py_0
  - pyzmq=18.1.1=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.22.0=py37_1
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py37_2
  - rsa=4.0=py_0
  - s3transfer=0.3.3=py37_0
  - scikit-learn=0.22.1=py37hd81dba3_0
  - scipy=1.4.1=py37h0b6359f_0
  - setuptools=45.2.0=py37_0
  - simplejson=3.17.0=py37h7b6447c_0
  - six=1.14.0=py37_0
  - smmap2=2.0.5=py37_0
  - sqlite=3.31.1=h62c20be_1
  - sqlparse=0.3.0=py_0
  - statsmodels=0.11.0=py37h7b6447c_0
  - tabulate=0.8.3=py37_0
  - tk=8.6.8=hbc83047_0
  - torchvision=0.6.0=py37_cu101
  - tornado=6.0.3=py37h7b6447c_3
  - tqdm=4.42.1=py_0
  - traitlets=4.3.3=py37_0
  - unixodbc=2.3.7=h14c3975_0
  - urllib3=1.25.8=py37_0
  - wcwidth=0.1.8=py_0
  - websocket-client=0.56.0=py37_0
  - werkzeug=1.0.0=py_0
  - wheel=0.34.2=py37_0
  - wrapt=1.11.2=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - astunparse==1.6.3
    - databricks-cli==0.11.0
    - diskcache==4.1.0
    - docker==4.2.1
    - gorilla==0.3.0
    - horovod==0.19.1
    - hyperopt==0.2.4.db1
    - keras-preprocessing==1.1.2
    - mleap==0.16.0
    - mlflow==1.8.0
    - opt-einsum==3.2.1
    - petastorm==0.9.2
    - pyarrow==0.15.1
    - pyyaml==5.3.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - sparkdl==2.1.0-db1
    - tensorboard==2.2.2
    - tensorboard-plugin-wit==1.6.0.post3
    - tensorflow-estimator==2.2.0
    - tensorflow-gpu==2.2.0
    - termcolor==1.1.0
    - xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml-gpu

Spark-pakketten met Python-modules

Spark-pakket Python-module Versie
graphframes graphframes 0.8.0-db2-spark3.0

R-bibliotheken

De R-bibliotheken zijn identiek aan de R-bibliotheken in Databricks Runtime 7.0 Beta.

Java- en Scala-bibliotheken (Scala 2.12-cluster)

Naast Java- en Scala-bibliotheken in Databricks Runtime 7.0 bevat Databricks Runtime 7.0 ML de volgende JAR's:

Groeps-id Artefact-id Versie
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.0-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.0.0
ml.dmlc xgboost4j_2.12 1.0.0
org.mlflow mlflow-client 1.8.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0