DocumentModelAdministrationAsyncClient Clase
- java.
lang. Object - com.
azure. ai. formrecognizer. documentanalysis. administration. DocumentModelAdministrationAsyncClient
- com.
public final class DocumentModelAdministrationAsyncClient
Esta clase proporciona un cliente asincrónico para conectarse al Form Recognizer Azure Cognitive Service.
Este cliente proporciona métodos asincrónicos para realizar:
- Creación de un modelo personalizado: extraiga datos de los documentos específicos mediante la creación de modelos personalizados mediante el beginBuidlDocumentModel método para proporcionar una dirección URL de SAS de contenedor al contenedor de blobs de Azure Storage.
- Modelos personalizados compuestos: crea un nuevo modelo a partir de los tipos de documento de la colección de modelos existentes mediante el beginComposeDocumentModel método .
- Copiar modelo personalizado: copie un modelo de Form Recognizer personalizado en un recurso de Form Recognizer de destino mediante el beginCopyDocumentModelTo método .
- Administración de modelos personalizados: obtenga información detallada, elimine y enumere modelos personalizados mediante métodos getDocumentModel(String modelId), y deleteDocumentModel(String modelId) respectivamentelistDocumentModels().
- Administración de operaciones: obtenga información detallada y enumerar las operaciones en la cuenta de Form Recognizer mediante métodos getOperation(String operationId) y listOperations() respectivamente.
- Sondeo y devoluciones de llamada: incluye mecanismos para sondear el servicio para comprobar el estado de una operación de análisis o registrar devoluciones de llamada para recibir notificaciones cuando se completa el análisis.
Nota: Este cliente solo admite V2022_08_31 y versiones más recientes. Para usar una versión de servicio anterior, FormRecognizerClient y FormTrainingClient.
Los clientes de servicio son el punto de interacción para que los desarrolladores usen Azure Form Recognizer. DocumentModelAdministrationClient es el cliente de servicio sincrónico y DocumentModelAdministrationAsyncClient es el cliente de servicio asincrónico. Los ejemplos que se muestran en este documento usan un objeto de credencial denominado DefaultAzureCredential para la autenticación, que es adecuado para la mayoría de los escenarios, incluidos los entornos de desarrollo y producción locales. Además, se recomienda usar la identidad administrada para la autenticación en entornos de producción. Puede encontrar más información sobre las distintas formas de autenticación y sus tipos de credenciales correspondientes en la documentación de Azure Identity.
Ejemplo: Construcción de con DocumentModelAdministrationAsyncClient DefaultAzureCredential
En el ejemplo de código siguiente se muestra la creación de un DocumentModelAdministrationAsyncClient, mediante "DefaultAzureCredentialBuilder" para configurarlo.
DocumentModelAdministrationAsyncClient client = new DocumentModelAdministrationClientBuilder()
.endpoint("{endpoint}")
.credential(new DefaultAzureCredentialBuilder().build())
.buildAsyncClient();
Además, consulte el ejemplo de código siguiente para usarlo AzureKeyCredential para la creación de clientes.
DocumentModelAdministrationAsyncClient documentModelAdministrationAsyncClient =
new DocumentModelAdministrationClientBuilder()
.credential(new AzureKeyCredential("{key}"))
.endpoint("{endpoint}")
.buildAsyncClient();
Resumen del método
Métodos heredados de java.lang.Object
Detalles del método
beginBuildDocumentClassifier
public PollerFlux
Crea un modelo de documento clasificador personalizado.
Los modelos clasificadores pueden identificar varios documentos o varias instancias de un único documento. Para ello, necesita al menos cinco documentos para cada clase y dos clases de documentos.
El servicio no admite la cancelación de la operación de larga duración y devuelve un mensaje de error que indica la ausencia de compatibilidad con la cancelación.
Código de ejemplo
String blobContainerUrl1040D = "{SAS_URL_of_your_container_in_blob_storage}";
String blobContainerUrl1040A = "{SAS_URL_of_your_container_in_blob_storage}";
HashMap<String, ClassifierDocumentTypeDetails> documentTypesDetailsMap = new HashMap<>();
documentTypesDetailsMap.put("1040-D", new ClassifierDocumentTypeDetails(new BlobContentSource(blobContainerUrl1040D)
));
documentTypesDetailsMap.put("1040-A", new ClassifierDocumentTypeDetails(new BlobContentSource(blobContainerUrl1040A)
));
documentModelAdministrationAsyncClient.beginBuildDocumentClassifier(documentTypesDetailsMap)
// if polling operation completed, retrieve the final result.
.flatMap(AsyncPollResponse::getFinalResult)
.subscribe(classifierDetails -> {
System.out.printf("Classifier ID: %s%n", classifierDetails.getClassifierId());
System.out.printf("Classifier description: %s%n", classifierDetails.getDescription());
System.out.printf("Classifier created on: %s%n", classifierDetails.getCreatedOn());
System.out.printf("Classifier expires on: %s%n", classifierDetails.getExpiresOn());
classifierDetails.getDocumentTypes().forEach((key, documentTypeDetails) -> {
if (documentTypeDetails.getContentSource() instanceof BlobContentSource) {
System.out.printf("Blob Source container Url: %s", ((BlobContentSource) documentTypeDetails
.getContentSource()).getContainerUrl());
}
});
});
Parameters:
Returns:
beginBuildDocumentClassifier
public PollerFlux
Crea un modelo de análisis de documentos personalizado. Los modelos se crean con documentos que son del siguiente tipo de contenido: "application/pdf", "image/jpeg", "image/png", "image/tiff", image/bmp. Cualquier otro tipo de contenido se ignora.
El servicio no admite la cancelación de la operación de larga duración y devuelve un mensaje de error que indica la ausencia de compatibilidad con la cancelación.
Consulte aquí para obtener información sobre cómo crear su propio conjunto de datos de administración.
Código de ejemplo
String blobContainerUrl1040D = "{SAS_URL_of_your_container_in_blob_storage}";
String blobContainerUrl1040A = "{SAS_URL_of_your_container_in_blob_storage}";
HashMap<String, ClassifierDocumentTypeDetails> documentTypesDetailsMap = new HashMap<>();
documentTypesDetailsMap.put("1040-D", new ClassifierDocumentTypeDetails(new BlobContentSource(blobContainerUrl1040D)
));
documentTypesDetailsMap.put("1040-A", new ClassifierDocumentTypeDetails(new BlobContentSource(blobContainerUrl1040A)
));
documentModelAdministrationAsyncClient.beginBuildDocumentClassifier(documentTypesDetailsMap,
new BuildDocumentClassifierOptions()
.setClassifierId("classifierId")
.setDescription("classifier desc"))
// if polling operation completed, retrieve the final result.
.flatMap(AsyncPollResponse::getFinalResult)
.subscribe(classifierDetails -> {
System.out.printf("Classifier ID: %s%n", classifierDetails.getClassifierId());
System.out.printf("Classifier description: %s%n", classifierDetails.getDescription());
System.out.printf("Classifier created on: %s%n", classifierDetails.getCreatedOn());
System.out.printf("Classifier expires on: %s%n", classifierDetails.getExpiresOn());
classifierDetails.getDocumentTypes().forEach((key, documentTypeDetails) -> {
if (documentTypeDetails.getContentSource() instanceof BlobContentSource) {
System.out.printf("Blob Source container Url: %s", ((BlobContentSource) documentTypeDetails
.getContentSource()).getContainerUrl());
}
});
});
Parameters:
Returns:
beginBuildDocumentModel
public PollerFlux
Crea un modelo de análisis de documentos personalizado. Los modelos se crean con documentos que son del siguiente tipo de contenido: "application/pdf", "image/jpeg", "image/png", "image/tiff", image/bmp. Cualquier otro tipo de contenido se ignora.
El servicio no admite la cancelación de la operación de larga duración y devuelve un mensaje de error que indica la ausencia de compatibilidad con la cancelación.
Consulte aquí para obtener información sobre cómo crear su propio conjunto de datos de administración.
Código de ejemplo
String blobContainerUrl = "{SAS-URL-of-your-container-in-blob-storage}";
String fileList = "";
documentModelAdministrationAsyncClient.beginBuildDocumentModel(
new BlobFileListContentSource(blobContainerUrl, fileList),
DocumentModelBuildMode.TEMPLATE)
// if polling operation completed, retrieve the final result.
.flatMap(AsyncPollResponse::getFinalResult)
.subscribe(documentModel -> {
System.out.printf("Model ID: %s%n", documentModel.getModelId());
System.out.printf("Model Created on: %s%n", documentModel.getCreatedOn());
documentModel.getDocumentTypes().forEach((key, documentTypeDetails) -> {
documentTypeDetails.getFieldSchema().forEach((field, documentFieldSchema) -> {
System.out.printf("Field: %s", field);
System.out.printf("Field type: %s", documentFieldSchema.getType());
System.out.printf("Field confidence: %.2f", documentTypeDetails.getFieldConfidence().get(field));
});
});
});
Parameters:
Returns:
beginBuildDocumentModel
public PollerFlux
Crea un modelo de análisis de documentos personalizado. Los modelos se compilan con documentos que son del siguiente tipo de contenido: "application/pdf", "image/jpeg", "image/png", "image/tiff", image/bmp. Cualquier otro tipo de contenido se ignora.
El servicio no admite la cancelación de la operación de larga duración y devuelve un mensaje de error que indica la ausencia de compatibilidad con la cancelación.
Consulte aquí para obtener información sobre cómo crear su propio conjunto de datos de administración.
Código de ejemplo
String blobContainerUrl = "{SAS-URL-of-your-container-in-blob-storage}";
String fileList = "";
String modelId = "model-id";
Map<String, String> attrs = new HashMap<String, String>();
attrs.put("createdBy", "sample");
String prefix = "Invoice";
documentModelAdministrationAsyncClient.beginBuildDocumentModel(
new BlobFileListContentSource(blobContainerUrl, fileList),
DocumentModelBuildMode.TEMPLATE,
new BuildDocumentModelOptions()
.setModelId(modelId)
.setDescription("model desc")
.setTags(attrs))
// if polling operation completed, retrieve the final result.
.flatMap(AsyncPollResponse::getFinalResult)
.subscribe(documentModel -> {
System.out.printf("Model ID: %s%n", documentModel.getModelId());
System.out.printf("Model Description: %s%n", documentModel.getDescription());
System.out.printf("Model Created on: %s%n", documentModel.getCreatedOn());
System.out.printf("Model assigned tags: %s%n", documentModel.getTags());
documentModel.getDocumentTypes().forEach((key, documentTypeDetails) -> {
documentTypeDetails.getFieldSchema().forEach((field, documentFieldSchema) -> {
System.out.printf("Field: %s", field);
System.out.printf("Field type: %s", documentFieldSchema.getType());
System.out.printf("Field confidence: %.2f", documentTypeDetails.getFieldConfidence().get(field));
});
});
});
Parameters:
Returns:
beginBuildDocumentModel
public PollerFlux
Crea un modelo de análisis de documentos personalizado. Los modelos se compilan con documentos que son del siguiente tipo de contenido: "application/pdf", "image/jpeg", "image/png", "image/tiff", image/bmp. Cualquier otro tipo de contenido se ignora.
El servicio no admite la cancelación de la operación de larga duración y devuelve un mensaje de error que indica la ausencia de compatibilidad con la cancelación.
Consulte aquí para obtener información sobre cómo crear su propio conjunto de datos de administración.
Código de ejemplo
String blobContainerUrl = "{SAS-URL-of-your-container-in-blob-storage}";
documentModelAdministrationAsyncClient.beginBuildDocumentModel(blobContainerUrl,
DocumentModelBuildMode.TEMPLATE
)
// if polling operation completed, retrieve the final result.
.flatMap(AsyncPollResponse::getFinalResult)
.subscribe(documentModel -> {
System.out.printf("Model ID: %s%n", documentModel.getModelId());
System.out.printf("Model Created on: %s%n", documentModel.getCreatedOn());
documentModel.getDocumentTypes().forEach((key, documentTypeDetails) -> {
documentTypeDetails.getFieldSchema().forEach((field, documentFieldSchema) -> {
System.out.printf("Field: %s", field);
System.out.printf("Field type: %s", documentFieldSchema.getType());
System.out.printf("Field confidence: %.2f", documentTypeDetails.getFieldConfidence().get(field));
});
});
});
Parameters:
Returns:
beginBuildDocumentModel
public PollerFlux
Crea un modelo de análisis de documentos personalizado. Los modelos se compilan con documentos que son del siguiente tipo de contenido: "application/pdf", "image/jpeg", "image/png", "image/tiff", image/bmp. Cualquier otro tipo de contenido se ignora.
El servicio no admite la cancelación de la operación de larga duración y devuelve un mensaje de error que indica la ausencia de compatibilidad con la cancelación.
Consulte aquí para obtener información sobre cómo crear su propio conjunto de datos de administración.
Código de ejemplo
String blobContainerUrl = "{SAS-URL-of-your-container-in-blob-storage}";
String modelId = "model-id";
Map<String, String> attrs = new HashMap<String, String>();
attrs.put("createdBy", "sample");
String prefix = "Invoice";
documentModelAdministrationAsyncClient.beginBuildDocumentModel(blobContainerUrl,
DocumentModelBuildMode.TEMPLATE,
prefix,
new BuildDocumentModelOptions()
.setModelId(modelId)
.setDescription("model desc")
.setTags(attrs))
// if polling operation completed, retrieve the final result.
.flatMap(AsyncPollResponse::getFinalResult)
.subscribe(documentModel -> {
System.out.printf("Model ID: %s%n", documentModel.getModelId());
System.out.printf("Model Description: %s%n", documentModel.getDescription());
System.out.printf("Model Created on: %s%n", documentModel.getCreatedOn());
System.out.printf("Model assigned tags: %s%n", documentModel.getTags());
documentModel.getDocumentTypes().forEach((key, documentTypeDetails) -> {
documentTypeDetails.getFieldSchema().forEach((field, documentFieldSchema) -> {
System.out.printf("Field: %s", field);
System.out.printf("Field type: %s", documentFieldSchema.getType());
System.out.printf("Field confidence: %.2f", documentTypeDetails.getFieldConfidence().get(field));
});
});
});
Parameters:
Returns:
beginComposeDocumentModel
public PollerFlux
Cree un modelo compuesto a partir de la lista proporcionada de modelos existentes en la cuenta.
Esta operación produce un error si la lista consta de un identificador de modelo no válido o de identificadores duplicados no existentes.
El servicio no admite la cancelación de la operación de larga duración y devuelve un mensaje de error que indica la ausencia de compatibilidad con la cancelación.
Código de ejemplo
String modelId1 = "{model_Id_1}";
String modelId2 = "{model_Id_2}";
documentModelAdministrationAsyncClient.beginComposeDocumentModel(Arrays.asList(modelId1, modelId2)
)
// if polling operation completed, retrieve the final result.
.flatMap(AsyncPollResponse::getFinalResult)
.subscribe(documentModel -> {
System.out.printf("Model ID: %s%n", documentModel.getModelId());
System.out.printf("Model Created on: %s%n", documentModel.getCreatedOn());
documentModel.getDocumentTypes().forEach((key, documentTypeDetails) -> {
documentTypeDetails.getFieldSchema().forEach((field, documentFieldSchema) -> {
System.out.printf("Field: %s", field);
System.out.printf("Field type: %s", documentFieldSchema.getType());
System.out.printf("Field confidence: %.2f", documentTypeDetails.getFieldConfidence().get(field));
});
});
});
Parameters:
Returns:
beginComposeDocumentModel
public PollerFlux
Cree un modelo compuesto a partir de la lista proporcionada de modelos existentes en la cuenta.
Esta operación produce un error si la lista consta de un identificador de modelo no válido o de identificadores duplicados no existentes.
El servicio no admite la cancelación de la operación de larga duración y devuelve un mensaje de error que indica la ausencia de compatibilidad con la cancelación.
Código de ejemplo
String modelId1 = "{model_Id_1}";
String modelId2 = "{model_Id_2}";
String modelId = "my-composed-model";
Map<String, String> attrs = new HashMap<String, String>();
attrs.put("createdBy", "sample");
documentModelAdministrationAsyncClient.beginComposeDocumentModel(Arrays.asList(modelId1, modelId2),
new ComposeDocumentModelOptions()
.setModelId(modelId)
.setDescription("model-desc")
.setTags(attrs))
// if polling operation completed, retrieve the final result.
.flatMap(AsyncPollResponse::getFinalResult)
.subscribe(documentModel -> {
System.out.printf("Model ID: %s%n", documentModel.getModelId());
System.out.printf("Model Description: %s%n", documentModel.getDescription());
System.out.printf("Model Created on: %s%n", documentModel.getCreatedOn());
System.out.printf("Model assigned tags: %s%n", documentModel.getTags());
documentModel.getDocumentTypes().forEach((key, documentTypeDetails) -> {
documentTypeDetails.getFieldSchema().forEach((field, documentFieldSchema) -> {
System.out.printf("Field: %s", field);
System.out.printf("Field type: %s", documentFieldSchema.getType());
System.out.printf("Field confidence: %.2f", documentTypeDetails.getFieldConfidence().get(field));
});
});
});
Parameters:
Returns:
beginCopyDocumentModelTo
public PollerFlux
Copie un modelo personalizado almacenado en este recurso (el origen) en el recurso de destino especificado por el usuario Form Recognizer recurso.
Se debe llamar a con el recurso de Form Recognizer de origen (con el modelo que está pensado para copiarse). El parámetro de destino debe proporcionarse a partir de la salida del recurso de destino del getCopyAuthorization() método .
El servicio no admite la cancelación de la operación de larga duración y devuelve un mensaje de error que indica la ausencia de compatibilidad con la cancelación.
Código de ejemplo
String copyModelId = "copy-model";
// Get authorization to copy the model to target resource
documentModelAdministrationAsyncClient.getCopyAuthorization()
// Start copy operation from the source client
// The ID of the model that needs to be copied to the target resource
.subscribe(copyAuthorization -> documentModelAdministrationAsyncClient.beginCopyDocumentModelTo(copyModelId,
copyAuthorization)
.filter(pollResponse -> pollResponse.getStatus().isComplete())
.flatMap(AsyncPollResponse::getFinalResult)
.subscribe(documentModel ->
System.out.printf("Copied model has model ID: %s, was created on: %s.%n,",
documentModel.getModelId(),
documentModel.getCreatedOn())));
Parameters:
Returns:
deleteDocumentClassifier
public Mono
Elimina el clasificador de documentos especificado.
Código de ejemplo
String classifierId = "{classifierId}";
documentModelAdministrationAsyncClient.deleteDocumentClassifier(classifierId)
.subscribe(ignored -> System.out.printf("Classifier ID: %s is deleted%n", classifierId));
Parameters:
Returns:
deleteDocumentClassifierWithResponse
public Mono
Elimina el clasificador de documentos especificado.
Código de ejemplo
String classifierId = "{classifierId}";
documentModelAdministrationAsyncClient.deleteDocumentClassifierWithResponse(classifierId)
.subscribe(response -> {
System.out.printf("Response Status Code: %d.", response.getStatusCode());
System.out.printf("Classifier ID: %s is deleted.%n", classifierId);
});
Parameters:
Returns:
deleteDocumentModel
public Mono
Elimina el modelo de análisis de documentos personalizado especificado.
Código de ejemplo
String modelId = "{model_id}";
documentModelAdministrationAsyncClient.deleteDocumentModel(modelId)
.subscribe(ignored -> System.out.printf("Model ID: %s is deleted%n", modelId));
Parameters:
Returns:
deleteDocumentModelWithResponse
public Mono
Elimina el modelo de análisis de documentos personalizado especificado.
Código de ejemplo
String modelId = "{model_id}";
documentModelAdministrationAsyncClient.deleteDocumentModelWithResponse(modelId)
.subscribe(response -> {
System.out.printf("Response Status Code: %d.", response.getStatusCode());
System.out.printf("Model ID: %s is deleted.%n", modelId);
});
Parameters:
Returns:
getCopyAuthorization
public Mono
Genere autorización para copiar un modelo de análisis de documentos personalizado en el recurso de Form Recognizer de destino.
El recurso de destino debe llamar a esto (donde se copiará el modelo) y la salida se puede pasar como parámetro de destino a beginCopyDocumentModelTo(String sourceModelId, DocumentModelCopyAuthorization target).
Returns:
getCopyAuthorizationWithResponse
public Mono
Genere autorización para copiar un modelo de análisis de documentos personalizado en el recurso de Form Recognizer de destino.
El recurso de destino debe llamar a esto (donde se copiará el modelo) y la salida se puede pasar como parámetro de destino a beginCopyDocumentModelTo(String sourceModelId, DocumentModelCopyAuthorization target).
Parameters:
documentModelAdministrationAsyncClient.getCopyAuthorizationWithResponse( new CopyAuthorizationOptions() .setModelId(modelId) .setDescription("model desc") .setTags(attrs)) .subscribe(copyAuthorization -> System.out.printf("Copy Authorization response status: %s, for model id: %s, access token: %s, " + "expiration time: %s, target resource ID; %s, target resource region: %s%n", copyAuthorization.getStatusCode(), copyAuthorization.getValue().getTargetModelId(), copyAuthorization.getValue().getAccessToken(), copyAuthorization.getValue().getExpiresOn(), copyAuthorization.getValue().getTargetResourceId(), copyAuthorization.getValue().getTargetResourceRegion() ));
Returns:
getDocumentAnalysisAsyncClient
public DocumentAnalysisAsyncClient getDocumentAnalysisAsyncClient()
Crea un nuevo objeto DocumentAnalysisAsyncClient. El nuevo DocumentTrainingAsyncClient
usa la misma canalización de directiva de solicitud que .DocumentTrainingAsyncClient
Returns:
getDocumentClassifier
public Mono
Obtenga información detallada para un clasificador de documentos por su identificador.
Código de ejemplo
String modelId = "{model_id}";
documentModelAdministrationAsyncClient.getDocumentClassifier(modelId).subscribe(documentClassifier -> {
System.out.printf("Classifier ID: %s%n", documentClassifier.getClassifierId());
System.out.printf("Classifier Description: %s%n", documentClassifier.getDescription());
System.out.printf("Classifier Created on: %s%n", documentClassifier.getCreatedOn());
documentClassifier.getDocumentTypes().forEach((key, documentTypeDetails) -> {
if (documentTypeDetails.getContentSource() instanceof BlobContentSource) {
System.out.printf("Blob Source container Url: %s", ((BlobContentSource) documentTypeDetails
.getContentSource()).getContainerUrl());
}
if (documentTypeDetails.getContentSource() instanceof BlobFileListContentSource) {
System.out.printf("Blob File List Source container Url: %s",
((BlobFileListContentSource) documentTypeDetails
.getContentSource()).getContainerUrl());
}
});
});
Parameters:
Returns:
getDocumentClassifierWithResponse
public Mono
Obtenga información detallada para un identificador de modelo especificado con respuesta Http.
Código de ejemplo
String modelId = "{model_id}";
documentModelAdministrationAsyncClient.getDocumentModelWithResponse(modelId).subscribe(response -> {
System.out.printf("Response Status Code: %d.", response.getStatusCode());
DocumentModelDetails documentModelDetails = response.getValue();
System.out.printf("Model ID: %s%n", documentModelDetails.getModelId());
System.out.printf("Model Description: %s%n", documentModelDetails.getDescription());
System.out.printf("Model Created on: %s%n", documentModelDetails.getCreatedOn());
documentModelDetails.getDocumentTypes().forEach((key, documentTypeDetails) -> {
documentTypeDetails.getFieldSchema().forEach((field, documentFieldSchema) -> {
System.out.printf("Field: %s", field);
System.out.printf("Field type: %s", documentFieldSchema.getType());
System.out.printf("Field confidence: %.2f", documentTypeDetails.getFieldConfidence().get(field));
});
});
});
Parameters:
Returns:
getDocumentModel
public Mono
Obtenga información detallada para un identificador de modelo especificado.
Código de ejemplo
String modelId = "{model_id}";
documentModelAdministrationAsyncClient.getDocumentModel(modelId).subscribe(documentModel -> {
System.out.printf("Model ID: %s%n", documentModel.getModelId());
System.out.printf("Model Description: %s%n", documentModel.getDescription());
System.out.printf("Model Created on: %s%n", documentModel.getCreatedOn());
documentModel.getDocumentTypes().forEach((key, documentTypeDetails) -> {
documentTypeDetails.getFieldSchema().forEach((field, documentFieldSchema) -> {
System.out.printf("Field: %s", field);
System.out.printf("Field type: %s", documentFieldSchema.getType());
System.out.printf("Field confidence: %.2f", documentTypeDetails.getFieldConfidence().get(field));
});
});
});
Parameters:
Returns:
getDocumentModelWithResponse
public Mono
Obtenga información detallada para un identificador de modelo especificado con respuesta Http.
Código de ejemplo
String modelId = "{model_id}";
documentModelAdministrationAsyncClient.getDocumentModelWithResponse(modelId).subscribe(response -> {
System.out.printf("Response Status Code: %d.", response.getStatusCode());
DocumentModelDetails documentModelDetails = response.getValue();
System.out.printf("Model ID: %s%n", documentModelDetails.getModelId());
System.out.printf("Model Description: %s%n", documentModelDetails.getDescription());
System.out.printf("Model Created on: %s%n", documentModelDetails.getCreatedOn());
documentModelDetails.getDocumentTypes().forEach((key, documentTypeDetails) -> {
documentTypeDetails.getFieldSchema().forEach((field, documentFieldSchema) -> {
System.out.printf("Field: %s", field);
System.out.printf("Field type: %s", documentFieldSchema.getType());
System.out.printf("Field confidence: %.2f", documentTypeDetails.getFieldConfidence().get(field));
});
});
});
Parameters:
Returns:
getOperation
public Mono
Obtenga información detallada de la operación para el identificador especificado.
Se produce un error en estas operaciones si el identificador de operación usado es de las últimas 24 horas.
Código de ejemplo
String operationId = "{operation_Id}";
documentModelAdministrationAsyncClient.getOperation(operationId).subscribe(operationDetails -> {
System.out.printf("Operation ID: %s%n", operationDetails.getOperationId());
System.out.printf("Operation Kind: %s%n", operationDetails.getKind());
System.out.printf("Operation Status: %s%n", operationDetails.getStatus());
System.out.printf("Model ID created with this operation: %s%n",
((DocumentModelBuildOperationDetails) operationDetails).getResult().getModelId());
if (OperationStatus.FAILED.equals(operationDetails.getStatus())) {
System.out.printf("Operation fail error: %s%n", operationDetails.getError().getMessage());
}
});
Parameters:
Returns:
getOperationWithResponse
public Mono
Obtenga información detallada de la operación para el identificador especificado con respuesta Http.
Se produce un error en estas operaciones si el identificador de operación usado es de las últimas 24 horas.
Código de ejemplo
String operationId = "{operation_Id}";
documentModelAdministrationAsyncClient.getOperationWithResponse(operationId).subscribe(response -> {
System.out.printf("Response Status Code: %d.", response.getStatusCode());
OperationDetails operationDetails = response.getValue();
System.out.printf("Operation ID: %s%n", operationDetails.getOperationId());
System.out.printf("Operation Kind: %s%n", operationDetails.getKind());
System.out.printf("Operation Status: %s%n", operationDetails.getStatus());
System.out.printf("Model ID created with this operation: %s%n",
((DocumentModelBuildOperationDetails) operationDetails).getResult().getModelId());
if (OperationStatus.FAILED.equals(operationDetails.getStatus())) {
System.out.printf("Operation fail error: %s%n", operationDetails.getError().getMessage());
}
});
Parameters:
Returns:
getResourceDetails
public Mono
Obtenga información sobre el recurso Form Recognizer actual.
Código de ejemplo
documentModelAdministrationAsyncClient.getResourceDetails()
.subscribe(resourceInfo -> {
System.out.printf("Max number of models that can be build for this account: %d%n",
resourceInfo.getCustomDocumentModelLimit());
System.out.printf("Current count of built document analysis models: %d%n",
resourceInfo.getCustomDocumentModelCount());
});
Returns:
getResourceDetailsWithResponse
public Mono
Obtenga la información sobre el recurso de Form Recognizer actual con una respuesta Http.
Código de ejemplo
documentModelAdministrationAsyncClient.getResourceDetailsWithResponse()
.subscribe(response -> {
System.out.printf("Response Status Code: %d.", response.getStatusCode());
ResourceDetails resourceDetails = response.getValue();
System.out.printf("Max number of models that can be build for this account: %d%n",
resourceDetails.getCustomDocumentModelLimit());
System.out.printf("Current count of built document analysis models: %d%n",
resourceDetails.getCustomDocumentModelCount());
});
Returns:
listDocumentClassifiers
public PagedFlux
Enumere la información de cada clasificador de documentos en la cuenta de Form Recognizer que se ha compilado correctamente.
Código de ejemplo
documentModelAdministrationAsyncClient.listDocumentClassifiers()
.subscribe(documentModelInfo ->
System.out.printf("Classifier ID: %s, Classifier description: %s, Created on: %s.%n",
documentModelInfo.getClassifierId(),
documentModelInfo.getDescription(),
documentModelInfo.getCreatedOn()));
Returns:
listDocumentModels
public PagedFlux
Enumere la información de cada modelo en la cuenta de Form Recognizer que se compilaron correctamente.
Código de ejemplo
documentModelAdministrationAsyncClient.listDocumentModels()
.subscribe(documentModelInfo ->
System.out.printf("Model ID: %s, Model description: %s, Created on: %s.%n",
documentModelInfo.getModelId(),
documentModelInfo.getDescription(),
documentModelInfo.getCreatedOn()));
Returns:
listOperations
public PagedFlux
Enumere la información de cada operación de modelo en la cuenta de Form Recognizer en las últimas 24 horas.
Código de ejemplo
documentModelAdministrationAsyncClient.listOperations()
.subscribe(modelOperationSummary -> {
System.out.printf("Operation ID: %s%n", modelOperationSummary.getOperationId());
System.out.printf("Operation Status: %s%n", modelOperationSummary.getStatus());
System.out.printf("Operation Created on: %s%n", modelOperationSummary.getCreatedOn());
System.out.printf("Operation Percent completed: %d%n", modelOperationSummary.getPercentCompleted());
System.out.printf("Operation Kind: %s%n", modelOperationSummary.getKind());
System.out.printf("Operation Last updated on: %s%n", modelOperationSummary.getLastUpdatedOn());
System.out.printf("Operation resource location: %s%n", modelOperationSummary.getResourceLocation());
});
Returns:
Se aplica a
Azure SDK for Java