共用方式為


Model Editor

Note

This article applies to Visual Studio 2015. If you're looking for the latest Visual Studio documentation, see Visual Studio documentation. We recommend upgrading to the latest version of Visual Studio. Download it here

This document describes how to work with the Visual Studio Model Editor to view, create, and modify 3-D models.

You can use the Model Editor to create basic 3-D models from scratch, or to view and modify more-complex 3-D models that were created by using full-featured 3-D modeling tools. The Model Editor supports several 3-D model formats that are used in DirectX app development.

Supported formats

The Model Editor supports these model formats:

Format Name File Extension Supported Operations (View, Edit, Create)
AutoDesk FBX Interchange File .fbx View, Edit, Create
Collada DAE File .dae View, Edit (Modifications to Collada DAE files are saved by using the FBX format.)
OBJ .obj View, Edit (Modifications to OBJ files are saved by using the FBX format.)

Getting started

This section describes how to add a 3-D model to your Visual Studio project and provides the basic information you need to get started.

To add a 3-D model to your project

  1. In Solution Explorer, open the shortcut menu for the project that you want to add the image to, and then choose Add, New Item.

  2. In the Add New Item dialog box, under Installed, select Graphics, and then select 3D Scene (.fbx).

  3. Specify the Name of the model file, and the Location where you want it to be created.

  4. Choose the Add button.

Axis orientation

Visual Studio supports every orientation of the 3-D axis, and loads axis orientation information from model file formats that support it. If no axis orientation is specified, Visual Studio uses the right-handed coordinate system by default. The axis indicator shows the current axis orientation in the lower-right corner of the design surface. On the axis indicator, red represents the x-axis, green represents the y-axis, and blue represents the z-axis.

Beginning your 3-D model

In the Model Editor, each new object always begins as one of the basic 3-D shapes—or primitives—that are built into the Model Editor. To create new and unique objects you add a primitive to the scene and then change its shape by modifying its vertices. For complex shapes, you add additional vertices by using extrusion or subdivision and then modify them. For information about how to add a primitive object to your scene, see Creating and importing 3-D objects. For information about how to add more vertices to an object, see Modifying objects.

Working with the Model Editor

The following sections describe how to use the Model Editor to work with 3-D models.

Model Editor toolbars

The Model Editor toolbars contain commands that help you work with 3-D models.

Commands that affect the state of the Model Editor are located on the Model Editor Mode toolbar in the main Visual Studio window. Modeling tools and scripted commands are located on the Model Editor toolbar on the Model Editor design surface.

Here's the Model Editor Mode toolbar:

The Model Viewer modal toolbar.

This table describes the items on the Model Editor Mode toolbar, which are listed in the order in which they appear from left to right.

Toolbar Item Description
Select Enables selection of points, edges, faces, or objects in the scene, depending on the active selection mode.
Pan Enables movement of a 3-D scene relative to the window frame. To pan, select a point in the scene and move it around.

In Select mode, you can press and hold Ctrl to activate Pan mode temporarily.
Zoom Enables the display of more or less scene detail relative to the window frame. In Zoom mode, select a point in the scene and then move it right or down to zoom in, or left or up to zoom out.

In Select mode, you can zoom in or out by using the mouse wheel while you press and hold Ctrl.
Orbit Positions the view on a circular path around the selected object. If no object is selected, the path is centered on the scene origin. Note: This mode has no effect when Orthographic projection is enabled.
World Local When this item is enabled, transformations on the selected object occur in world-space. Otherwise, transformations on the selected object occur in local-space.
Pivot Mode When this item is enabled, transformations affect the location and orientation of the pivot point of the selected object (The pivot point defines the center of translation, scaling, and rotation operations.) Otherwise, transformations affect the location and orientation of the object's geometry, relative to the pivot point.
Lock X axis Restricts object manipulation to the x axis. Applies only when you use the center part of the manipulator widget.
Lock Y axis Restricts object manipulation to the y axis. Applies only when you use the center part of the manipulator widget.
Lock Z axis Restricts object manipulation to the z axis. Applies only when you use the center part of the manipulator widget.
Frame Object Frames the selected object so that it's located in the center of the view.
View Sets the view orientation. Here are the available orientations:

Front
Positions the view in front of the scene.

Back
Positions the view behind the scene.

Left
Positions the view to the left of the scene.

Right
Positions the view to the right of the scene.

Top
Positions the view above the scene.

Bottom
Positions the view beneath the scene. Note: This is the only way to change the view direction when Orthographic projection is enabled.
Projection Sets the kind of projection that is used to draw the scene. Here are the available projections:

Perspective
In perspective projection, objects that are farther away from the viewpoint appear smaller in size and ultimately converge to a point in the distance.

Orthographic
In Orthographic projection, objects appear to be the same size, regardless of their distance from the viewpoint. No convergence is displayed. When Orthographic projection enabled, you can't use Orbit mode to position the view.
Draw Style Sets how objects in the scene are rendered. Here are the available styles:

Wire Frame
When enabled, objects are rendered as wireframes.

Overdraw
When enabled, objects are rendered by using additive blending. You can use this to visualize how much overdraw is occurring in the scene.

Flat Shaded
When enabled, objects are rendered by using a basic, flat shaded lighting model. You can use this to see the faces of an object more easily.

If none of these options are enabled, each object is rendered by using the material that's applied to it.
Real-Time Rendering Mode When real-time rendering is enabled, Visual Studio redraws the design surface, even when no user action is performed. This mode is useful when you work with shaders that change over time.
Toggle Grid When this item is enabled, a grid is displayed. Otherwise, the grid is not displayed.
Toolbox Alternately shows or hides the Toolbox.
Document Outline Alternately shows or hides the Document Outline window.
Properties Alternately shows or hides the Properties window.
Advanced Contains advanced commands and options.

Graphics Engines

Render with D3D11
Uses Direct3D 11 to render the Model Editor design surface.

Render with D3D11WARP
Uses Direct3D 11 Windows Advanced Rasterization Platform (WARP) to render the Model Editor design surface.

Scene Management

Import
Imports objects from another 3-D model file to the current scene.

Attach to Parent
Establishes the first of multiple selected objects as the parent of the remaining selected objects.

Detach from Parent
Detaches the selected object from its parent. The selected object becomes a root object in the scene. A root object doesn't have a parent object.

Create Group
Groups the selected objects as sibling objects.

Merge Objects
Combines the selected objects into one object.

Create New Object From Polygon Selection
Removes the selected faces from the current object and adds to the scene a new object that contains those faces.

Tools

Flip Polygon Winding
Flips the selected polygons so that its winding order and surface normal are inverted.

Remove All Animation
Removes animation data from the objects.

Triangulate
Converts the selected object to triangles.

View

Backface Culling
Enables or disables backface culling.

Frame Rate
Displays the frame rate in the upper-right corner of the design surface. The frame rate is the number of frames that are drawn per second.

This option is useful when you enable the Real-Time Rendering Mode option.

Show All
Shows all objects in the scene. This resets the Hidden property of each object to False.

Show Face Normals
Shows the normal of each face.

Show Missing Materials
Displays a special texture on objects that don't have a material assigned to them.

Show Pivot
Enables or disables the display of a 3-D axis marker at the pivot point of the active selection.

Show Placeholder Nodes
Shows placeholder nodes. A placeholder node is created when you group objects.

Show Vertex Normals
Shows the normal of each vertex. Tip: You can choose the Scripts button to run the last script again.

Here's the Model Editor toolbar:

Model Viewer toolbar

The next table describes the items on the Model Editor toolbar, which are listed in the order in which they appear from top to bottom.

Toolbar Item Description
Translate Moves the selection.
Scale Changes the size of the selection.
Rotate Rotates the selection.
Select Point Sets the Selection mode to select individual points on an object.
Select Edge Sets the Selection mode to select an edge (a line between two vertices) on an object.
Select Face Sets the Selection mode to select a face on an object.
Select Object Sets the Selection mode to select an entire object.
Extrude Creates an additional face and connects it to the selected face.
Subdivide Divides each selected face into multiple faces. To create the new faces, new vertices are added—one in the center of the original face, and one in the middle of each edge—and then joined together with the original vertices. The number of added faces is equal to the number of edges in the original face.

Controlling the view

The 3-D scene is rendered according to the view, which can be thought of as a virtual camera that has a position and an orientation. To change the position and orientation, use the view controls on the Model Editor Mode toolbar.

The following table describes the primary view controls.

View Control Description
Pan Enables movement of a 3-D scene relative to the window frame. To pan, select a point in the scene and move it around.

In Select mode, you can press and hold Ctrl to activate Pan mode temporarily.
Zoom Enables the display of more or less scene detail relative to the window frame. In Zoom mode, select a point in the scene and then move it right or down to zoom in, or left or up to zoom out.

In Select mode, you can zoom in or out by using the mouse wheel while you press and hold Ctrl.
Orbit Positions the view on a circular path around the selected object. If no object is selected, the path is centered on the scene origin. Note: This mode has no effect when Orthographic projection is enabled.
Frame Object Frames the selected object so that it's located in the center of the view.

The view is established by the virtual camera, but it's also defined by a projection. The projection defines how shapes and objects in the view are translated into pixels on the design surface. On the Model Editor toolbar, you can choose either Perspective or Orthographic projection.

Projection Description
Perspective In perspective projection, objects that are farther away from the viewpoint appear smaller in size and ultimately converge to a point in the distance.
Orthographic In Orthographic projection, objects appear to be the same size, regardless of their distance from the viewpoint. No convergence is displayed. When Orthographic projection enabled, you can't use Orbit mode to position the view arbitrarily.

You might find it useful to view a 3-D scene from a known position and angle, for example, when you want to compare two similar scenes. For this scenario, the Model Editor provides several predefined views. To use a predefined view, on the Model Editor Mode toolbar, choose View, and then choose the predefined view you want—front, back, left, right, top, or bottom. In these views, the virtual camera looks directly at the origin of the scene. For example, if you choose View Top, the virtual camera looks at the origin of the scene from directly above it.

Viewing additional geometry details

To better understand a 3-D object or scene, you can view additional geometry details such as per-vertex normals, per-face normals, the pivot points of the active selection, and other details. To enable or disable them, on the Model Editor toolbar, choose Scripts, View, and then choose the one you want.

Creating and importing 3-D objects

To add a predefined 3-D shape to the scene, in the Toolbox, select the one you want and then move it to the design surface. New shapes are positioned at the origin of the scene. The Model Editor provides seven shapes: Cone, Cube, Cylinder, Disc, Plane, Sphere, and Teapot.

To import a 3-D object from a file, on the Model Editor toolbar, choose Advanced, Scene Management, Import, and then specify the file that you want to import.

Transforming objects

You can transform an object by changing its Rotation, Scale, and Translation properties. Rotation orients an object by applying successive rotations around the x-axis, y-axis, and z-axis defined by its pivot point. Each rotation specification has three components—x, y, and z, in that order—and the components are specified in degrees. Scaling resizes an object by stretching it by a specified factor along one or more axes centered on its pivot point. Translation locates an object in 3-dimensional space relative to its parent instead of its pivot point.

You can transform and object either by using modeling tools or by setting properties.

To transform an object by using modeling tools
  1. In Select mode, select the object you want to transform. A wireframe overlay indicates that the object is selected.

  2. On the Model Editor toolbar, choose the Translate, Scale, or Rotate tool. A translation, scaling, or rotation manipulator appears for the selected object.

  3. Use the manipulator to perform the transformation. For translation and scaling transformations, the manipulator is an axis indicator. You can change one axis at a time, or you can change all axes at the same time by using the white cube at the center of the indicator. For rotation, the manipulator is a sphere made of color-coded circles that correspond to the x-axis (red), y-axis (green), and z-axis (blue). You have to change each axis individually to create the rotation you want.

To transform an object by setting its properties
  1. In Select mode, select the object that you want to transform. A wireframe overlay indicates that the object is selected.

  2. In the Properties window, specify values for the Rotation, Scale, and Translation properties.

    Important

    For the Rotation property, specify the degree of rotation around each of the three axes. Rotations are applied in order, so make sure to plan a rotation, first in terms of the x-axis rotation, then the y-axis, and then the z-axis.

    By using the modeling tools, you can create transformations quickly but not precisely. By setting the object properties, you can specify transformations precisely but not quickly. We recommend that you use the modeling tools to get "close enough" to the transformations you want, and then fine-tune the property values.

    If you don't want to use manipulators, you can enable free-form mode. On the Model Editor toolbar, choose Scripts, Tools, Free-form Manipulation to enable (or disable) free-form mode. In free-form mode, you can begin a manipulation at any point on the design surface instead of a point on the manipulator. In free-form mode, you can constrain changes to certain axes by locking the ones you don't want to change. On the Model Editor Mode toolbar, choose any combination of the Lock X, Lock Y, and Lock Z buttons.

    You might find it useful to work with objects by using snap-to-grid. On the Model Editor Mode toolbar, choose Snap to enable (or disable) snap-to-grid. When snap-to-grid is enabled, translation, rotation, and scaling transformations are constrained to predefined increments.

Working with the pivot point

The pivot point of an object defines its center of rotation and scaling. You can change the pivot point of an object to change how it's affected by rotation and scaling transformations. On the Model Editor Mode toolbar, choose Pivot Mode to enable (or disabled) pivot mode. When pivot mode is enabled, a small axis indicator appears at the pivot point of the selected object. You can then use the Translation and Rotation tools to manipulate the pivot point.

For a demonstration that shows how to use the pivot point, see How to: Modify the Pivot Point of a 3-D Model.

World and local modes

Translation and rotation can occur in either the local coordinate system (or local frame-of-reference) of the object, or in the coordinate system of the world (or the world frame-of-reference). The world frame-of-reference is independent of the rotation of the object. Local mode is the default. To enable (or disable) world mode, on the Model Editor Mode toolbar, choose the WorldLocal button.

Modifying objects

You can change the shape of a 3-D object by moving or deleting its vertices, edges, and faces. By default, the Model Editor is in object mode, so that you can select and transform entire objects. To select points, edges, or faces, choose the appropriate selection mode. On the Model Editor Mode toolbar, choose Selection modes, and then choose the mode that you want.

You can create additional vertices by extrusion or by subdivision. Extrusion duplicates the vertices of a face (a co-planar set of vertices), which remain connected by the duplicated vertices. Subdivision adds vertices to create several faces where there was previously one. To create the new faces, new vertices are added—one in the center of the original face, and one in the middle of each edge—and then joined together with the original vertices. The number of added faces is equal to the number of edges in the original face. In both cases, you can translate, rotate, and scale the new vertices to change the geometry of the object.

To extrude a face from an object
  1. In face-select mode, select the face you want to extrude.

  2. On the Model Editor toolbar, choose Scripts, Tools, Extrude.

To subdivide faces
  1. In face-select mode, select the faces you want to subdivide. Because subdivision creates new edge data, subdividing all faces at once gives more-consistent results when the faces are adjacent.

  2. On the Model Editor toolbar, choose Scripts, Tools, Subdivide.

    You can also triangulate faces, merge objects, and convert polygon selections into new objects. Triangulation creates additional edges such that a non-triangular face is converted to an optimal number of triangles; however, it doesn't provide additional geometric detail. Merging combines selected objects into one object. New objects can be created from a polygon selection.

To triangulate a face
  1. In face-select mode, select the face you want to triangulate.

  2. On the Model Editor toolbar, choose Scripts, Tools, Triangulate.

To merge objects
  1. In object-select mode, select the objects you want to merge.

  2. On the Model Editor toolbar, choose Scripts, Tools, Merge Objects.

To create an object from a polygon selection
  1. In face-select mode, select the faces you want to create a new object from.

  2. On the Model Editor toolbar, choose Scripts, Tools, Create New Object from Polygon Selection.

Working with materials and shaders

The appearance of an object is determined by the interaction of lighting in the scene and the material of the object. Materials are defined by properties that describe how the surface reacts to different types of light and by a shader program that calculates the final color of each pixel on the object surface based on lighting information, texture maps, normal maps, and other data.

The Model Editor provides these default materials:

Material Description
Unlit Renders a surface without any simulated lighting.
Lambert Renders a surface with simulated ambient lighting and diffuse lighting.
Phong Renders a surface with simulated ambient lighting, diffuse lighting, and specular highlights.

Each of these materials applies one texture on the surface of an object. You can set a different texture for each object that uses the material.

To modify how a particular object reacts to the different light sources in the scene, you can change the lighting properties of material independent of other objects that use the material. This table describes common lighting properties:

Lighting Property Description
Ambient Describes how the surface is affected by ambient lighting.
Diffuse Describes how the surface is affected by directional and point lights.
Emissive Describes how the surface emits light, independent of other lighting.
Specular Describes how the surface reflects directional and point lights.
Specular Power Describes the breadth and intensity of specular highlights.

Depending on what a material supports, you can change its lighting properties, textures, and other data. In Select mode, select the object whose material you want to change, and then in the Properties window, change the MaterialAmbient, MaterialDiffuse, MaterialEmissive, MaterialSpecular, MaterialSpecularPower, or other available property. A material can expose up to eight textures, whose properties are named sequentially from Texture1 to Texture8.

To remove all materials from an object, on the Model Editor toolbar, choose Scripts, Materials, Remove Materials.

You can use the Shader Designer to create custom shader materials that you can apply to objects in your 3-D scene. For information about how to create custom shader materials, see Shader Designer. For information about how to apply a custom shader material to an object, see How to: Apply a Shader to a 3-D Model.

Scene management

You can manage scenes as a hierarchy of objects. When multiple objects are arranged in a hierarchy, any translation, scale, or rotation of a parent node also affects its children. This is useful when you want to construct complex objects or scenes from more basic objects.

You can use the Document Outline window to view the scene hierarchy and select scene nodes. When you select a node in the outline, you can use the Properties window to modify its properties.

You can construct a hierarchy of objects either by making one of them the parent to the others or by grouping them together as siblings under a placeholder node that acts as the parent.

To create a hierarchy that has a parent object
  1. In Select mode, select two or more objects. The first one you select will be the parent object.

  2. On the Model Editor toolbar, choose Scripts, Scene Management, Attach to Parent.

To create a hierarchy of sibling objects
  1. In Select mode, select two or more objects. A placeholder object is created and becomes their parent object.

  2. On the Model Editor toolbar, choose Scripts, Scene Management, Create Group.

    The Model Editor uses a white wireframe to identify the first selected object, which becomes the parent. Other objects in the selection have a blue wireframe. By default, placeholder nodes are not displayed. To display placeholder nodes, on the Model Editor toolbar, choose Scripts, Scene Management, Show Placeholder Nodes. You can work with placeholder nodes just as you work with non-placeholder objects.

    To remove the parent-child association between two objects, select the child object, and then on the Model Editor toolbar, choose Scripts, Scene Management, Detach from Parent. When you detach the parent from a child object, the child object becomes a root object in the scene.

Keyboard shortcuts

Command Keyboard shortcuts
Switch to Select mode Ctrl+G, Gtrl+Q

S
Switch to Zoom mode Ctrl+G, Ctrl+Z

Z
Switch to Pan mode Ctrl+G, Ctrl+P

K
Select all Ctrl+A
Delete the current selection Delete
Cancel the current selection Escape
Zoom in Mouse wheel forward

Ctrl+Mouse wheel forward

Shift+Mouse wheel forward

Ctrl+PageUp

Plus Sign (+)
Zoom out Mouse wheel backward

Ctrl+Mouse wheel backward

Shift+Mouse wheel backward

Ctrl+PageDown

Minus Sign (-)
Pan the camera up PageDown
Pan the camera down PageUp
Pan the camera left Mouse wheel left

Ctrl+PageDown
Pan the camera right Mouse wheel right

Ctrl+PageDown
View top of model Ctrl+L, Ctrl+T

T
View bottom of model Ctrl+L, Ctrl+U
View left side of model Ctrl+L, Ctrl+L
View right side of model Ctrl+L, Ctrl+R
View front of model Ctrl+L, Ctrl+F
View back of model Ctrl+L, Ctrl+B
Frame object in window F
Toggle wireframe mode Ctrl+L, Ctrl+W
Toggle snap-to-grid Ctrl+G, Ctrl+N
Toggle pivot mode Ctrl+G, Ctrl+V
Toggle x-axis restriction Ctrl+L, Ctrl+X
Toggle y-axis restriction Ctrl+L, Ctrl+Y
Toggle z-axis restriction Ctrl+L, Ctrl+Z
Switch to translation mode Ctrl+G, Ctrl+W

W
Switch to scale mode Ctrl+G, Ctrl+E

E
Switch to rotation mode Ctrl+G, Ctrl+R

R
Switch to point-select mode Ctrl+L, Ctrl+1
Switch to edge-select mode Ctrl+L, Ctrl+2
Switch to face-select mode Ctrl+L, Ctrl+3
Switch to object-select mode Ctrl+L, Ctrl+4
Switch to orbit (camera) mode Ctrl+G, Ctrl+O
Select next object in scene Tab
Select previous object in scene Shift+Tab
Manipulate the selected object based on the current tool. The arrow keys
Deactivate current manipulator Q
Rotate camera Alt+Drag with left mouse button
Title Description
Working with 3-D Assets for Games and Apps Provides an overview of the Visual Studio tools that you can use to work with graphics assets such as textures and images, 3-D models, and shader effects.
Image Editor Describes how to use the Visual Studio Image Editor to work with textures and images.
Shader Designer Describes how to use the Visual Studio Shader Designer to work with shaders.