StandardTrainersCatalog.PairwiseCoupling<TModel> 方法
定義
重要
部分資訊涉及發行前產品,在發行之前可能會有大幅修改。 Microsoft 對此處提供的資訊,不做任何明確或隱含的瑕疵擔保。
建立 , PairwiseCouplingTrainer 以搭配 所 binaryEstimator
指定的二元分類估算器,使用配對結合策略來預測多類別目標。
public static Microsoft.ML.Trainers.PairwiseCouplingTrainer PairwiseCoupling<TModel> (this Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<TModel>,TModel> binaryEstimator, string labelColumnName = "Label", bool imputeMissingLabelsAsNegative = false, Microsoft.ML.IEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<Microsoft.ML.Calibrators.ICalibrator>> calibrator = default, int maximumCalibrationExampleCount = 1000000000) where TModel : class;
static member PairwiseCoupling : Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers * Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<'Model>, 'Model (requires 'Model : null)> * string * bool * Microsoft.ML.IEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<Microsoft.ML.Calibrators.ICalibrator>> * int -> Microsoft.ML.Trainers.PairwiseCouplingTrainer (requires 'Model : null)
<Extension()>
Public Function PairwiseCoupling(Of TModel As Class) (catalog As MulticlassClassificationCatalog.MulticlassClassificationTrainers, binaryEstimator As ITrainerEstimator(Of ISingleFeaturePredictionTransformer(Of TModel), TModel), Optional labelColumnName As String = "Label", Optional imputeMissingLabelsAsNegative As Boolean = false, Optional calibrator As IEstimator(Of ISingleFeaturePredictionTransformer(Of ICalibrator)) = Nothing, Optional maximumCalibrationExampleCount As Integer = 1000000000) As PairwiseCouplingTrainer
類型參數
- TModel
模型的型別。 這個類型參數通常會從 binaryEstimator
自動推斷。
參數
多元分類目錄定型器物件。
- binaryEstimator
- ITrainerEstimator<ISingleFeaturePredictionTransformer<TModel>,TModel>
做為基底定型器之二進位 ITrainerEstimator<TTransformer,TModel> 檔的實例。
- labelColumnName
- String
標籤資料行的名稱。
- imputeMissingLabelsAsNegative
- Boolean
是否要將遺漏的標籤視為具有負標籤,而不是讓它們保持遺漏。
- calibrator
- IEstimator<ISingleFeaturePredictionTransformer<ICalibrator>>
校正器。 如果未明確提供校正器,則會預設為 Microsoft.ML.Calibrators.PlattCalibratorTrainer
- maximumCalibrationExampleCount
- Int32
要定型校正器的實例數目。
傳回
範例
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.MulticlassClassification
{
public static class PairwiseCoupling
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion.MapValueToKey("Label")
// Apply PairwiseCoupling multiclass meta trainer on top of
// binary trainer.
.Append(mlContext.MulticlassClassification.Trainers
.PairwiseCoupling(
mlContext.BinaryClassification.Trainers.SdcaLogisticRegression()));
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Look at 5 predictions
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, " +
$"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification
.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Micro Accuracy: 0.90
// Macro Accuracy: 0.90
// Log Loss: 0.36
// Log Loss Reduction: 0.67
// Confusion table
// ||========================
// PREDICTED || 0 | 1 | 2 | Recall
// TRUTH ||========================
// 0 || 150 | 0 | 10 | 0.9375
// 1 || 0 | 166 | 11 | 0.9379
// 2 || 15 | 15 | 133 | 0.8160
// ||========================
// Precision ||0.9091 |0.9171 |0.8636 |
}
// Generates random uniform doubles in [-0.5, 0.5)
// range with labels 1, 2 or 3.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 4);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a
// constant multiple of label.
Features = Enumerable.Repeat(label, 20)
.Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}
// Example with label and 20 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}
// Pretty-print MulticlassClassificationMetrics objects.
public static void PrintMetrics(MulticlassClassificationMetrics metrics)
{
Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy:F2}");
Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy:F2}");
Console.WriteLine($"Log Loss: {metrics.LogLoss:F2}");
Console.WriteLine(
$"Log Loss Reduction: {metrics.LogLossReduction:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
備註
在 [配對結合 (PKPD) 策略中,二元分類演算法是用來為每個類別配對定型一個分類器。 然後,執行這些二元分類器來執行預測,並計算每個類別的分數,方法是計算其預測的二進位分類器數目。 預測是最高分數的類別。