TableVerticalFeaturizationSettings Class
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Featurization Configuration.
public class TableVerticalFeaturizationSettings : Azure.ResourceManager.MachineLearning.Models.MachineLearningFeaturizationSettings, System.ClientModel.Primitives.IJsonModel<Azure.ResourceManager.MachineLearning.Models.TableVerticalFeaturizationSettings>, System.ClientModel.Primitives.IPersistableModel<Azure.ResourceManager.MachineLearning.Models.TableVerticalFeaturizationSettings>
public class TableVerticalFeaturizationSettings : Azure.ResourceManager.MachineLearning.Models.MachineLearningFeaturizationSettings
type TableVerticalFeaturizationSettings = class
inherit MachineLearningFeaturizationSettings
interface IJsonModel<TableVerticalFeaturizationSettings>
interface IPersistableModel<TableVerticalFeaturizationSettings>
type TableVerticalFeaturizationSettings = class
inherit MachineLearningFeaturizationSettings
Public Class TableVerticalFeaturizationSettings
Inherits MachineLearningFeaturizationSettings
Implements IJsonModel(Of TableVerticalFeaturizationSettings), IPersistableModel(Of TableVerticalFeaturizationSettings)
Public Class TableVerticalFeaturizationSettings
Inherits MachineLearningFeaturizationSettings
- Inheritance
- Implements
Constructors
TableVerticalFeaturizationSettings() |
Initializes a new instance of TableVerticalFeaturizationSettings. |
Properties
BlockedTransformers |
These transformers shall not be used in featurization. |
ColumnNameAndTypes |
Dictionary of column name and its type (int, float, string, datetime etc). |
DatasetLanguage |
Dataset language, useful for the text data. (Inherited from MachineLearningFeaturizationSettings) |
EnableDnnFeaturization |
Determines whether to use Dnn based featurizers for data featurization. |
Mode |
Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase. If 'Off' is selected then no featurization is done. If 'Custom' is selected then user can specify additional inputs to customize how featurization is done. |
TransformerParams |
User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. |