AnomalyDetectorClient.DetectUnivariateEntireSeriesAsync Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Overloads
DetectUnivariateEntireSeriesAsync(RequestContent, RequestContext) |
[Protocol Method] Detect anomalies for the entire series in batch.
|
DetectUnivariateEntireSeriesAsync(UnivariateDetectionOptions, CancellationToken) |
Detect anomalies for the entire series in batch. |
DetectUnivariateEntireSeriesAsync(RequestContent, RequestContext)
- Source:
- AnomalyDetectorClient.cs
[Protocol Method] Detect anomalies for the entire series in batch.
- This protocol method allows explicit creation of the request and processing of the response for advanced scenarios.
- Please try the simpler DetectUnivariateEntireSeriesAsync(UnivariateDetectionOptions, CancellationToken) convenience overload with strongly typed models first.
public virtual System.Threading.Tasks.Task<Azure.Response> DetectUnivariateEntireSeriesAsync (Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member DetectUnivariateEntireSeriesAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
override this.DetectUnivariateEntireSeriesAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
Public Overridable Function DetectUnivariateEntireSeriesAsync (content As RequestContent, Optional context As RequestContext = Nothing) As Task(Of Response)
Parameters
- content
- RequestContent
The content to send as the body of the request.
- context
- RequestContext
The request context, which can override default behaviors of the client pipeline on a per-call basis.
Returns
The response returned from the service.
Exceptions
content
is null.
Service returned a non-success status code.
Examples
This sample shows how to call DetectUnivariateEntireSeriesAsync with required request content, and how to parse the result.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
value = 123.45f,
}
},
};
Response response = await client.DetectUnivariateEntireSeriesAsync(RequestContent.Create(data));
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("expectedValues")[0].ToString());
Console.WriteLine(result.GetProperty("upperMargins")[0].ToString());
Console.WriteLine(result.GetProperty("lowerMargins")[0].ToString());
Console.WriteLine(result.GetProperty("isAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly")[0].ToString());
This sample shows how to call DetectUnivariateEntireSeriesAsync with all request content, and how to parse the result.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var data = new {
series = new[] {
new {
timestamp = "2022-05-10T14:57:31.2311892-04:00",
value = 123.45f,
}
},
granularity = "yearly",
customInterval = 1234,
period = 1234,
maxAnomalyRatio = 123.45f,
sensitivity = 1234,
imputeMode = "auto",
imputeFixedValue = 123.45f,
};
Response response = await client.DetectUnivariateEntireSeriesAsync(RequestContent.Create(data), new RequestContext());
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("period").ToString());
Console.WriteLine(result.GetProperty("expectedValues")[0].ToString());
Console.WriteLine(result.GetProperty("upperMargins")[0].ToString());
Console.WriteLine(result.GetProperty("lowerMargins")[0].ToString());
Console.WriteLine(result.GetProperty("isAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isNegativeAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("isPositiveAnomaly")[0].ToString());
Console.WriteLine(result.GetProperty("severity")[0].ToString());
Remarks
This operation generates a model with an entire series, each point is detected with the same model. With this method, points before and after a certain point are used to determine whether it is an anomaly. The entire detection can give user an overall status of the time series.
Below is the JSON schema for the request and response payloads.
Request Body:
Schema for UnivariateDetectionOptions
:
{
series: [
{
timestamp: string (date & time), # Optional.
value: number, # Required.
}
], # Required.
granularity: "yearly" | "monthly" | "weekly" | "daily" | "hourly" | "minutely" | "secondly" | "microsecond" | "none", # Optional.
customInterval: number, # Optional.
period: number, # Optional.
maxAnomalyRatio: number, # Optional.
sensitivity: number, # Optional.
imputeMode: "auto" | "previous" | "linear" | "fixed" | "zero" | "notFill", # Optional.
imputeFixedValue: number, # Optional.
}
Response Body:
Schema for UnivariateEntireDetectionResult
:
{
period: number, # Required.
expectedValues: [number], # Required.
upperMargins: [number], # Required.
lowerMargins: [number], # Required.
isAnomaly: [boolean], # Required.
isNegativeAnomaly: [boolean], # Required.
isPositiveAnomaly: [boolean], # Required.
severity: [number], # Optional.
}
Applies to
DetectUnivariateEntireSeriesAsync(UnivariateDetectionOptions, CancellationToken)
- Source:
- AnomalyDetectorClient.cs
Detect anomalies for the entire series in batch.
public virtual System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>> DetectUnivariateEntireSeriesAsync (Azure.AI.AnomalyDetector.UnivariateDetectionOptions options, System.Threading.CancellationToken cancellationToken = default);
abstract member DetectUnivariateEntireSeriesAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>>
override this.DetectUnivariateEntireSeriesAsync : Azure.AI.AnomalyDetector.UnivariateDetectionOptions * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.UnivariateEntireDetectionResult>>
Public Overridable Function DetectUnivariateEntireSeriesAsync (options As UnivariateDetectionOptions, Optional cancellationToken As CancellationToken = Nothing) As Task(Of Response(Of UnivariateEntireDetectionResult))
Parameters
- options
- UnivariateDetectionOptions
Method of univariate anomaly detection.
- cancellationToken
- CancellationToken
The cancellation token to use.
Returns
Exceptions
options
is null.
Examples
This sample shows how to call DetectUnivariateEntireSeriesAsync with required parameters.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var options = new UnivariateDetectionOptions(new TimeSeriesPoint[]
{
new TimeSeriesPoint(3.14f)
{
Timestamp = DateTimeOffset.UtcNow,
}
})
{
Granularity = TimeGranularity.Yearly,
CustomInterval = 1234,
Period = 1234,
MaxAnomalyRatio = 3.14f,
Sensitivity = 1234,
ImputeMode = ImputeMode.Auto,
ImputeFixedValue = 3.14f,
};
var result = await client.DetectUnivariateEntireSeriesAsync(options);
Remarks
This operation generates a model with an entire series. Each point is detected with the same model. With this method, points before and after a certain point are used to determine whether it's an anomaly. The entire detection can give the user an overall status of the time series.