US National Employment Hours and Earnings (美國全國的工時與工資)
目前就業統計 (CES) 計劃會產生詳細的美國非農就業產業預估值、工作時數和工作者的薪資收入。
注意
Microsoft 依「現況」提供 Azure 開放資料集。 針對 貴用戶對資料集的使用方式,Microsoft 不提供任何明示或默示的擔保、保證或條件。 在 貴用戶當地法律允許的範圍內,針對因使用資料集而導致的任何直接性、衍生性、特殊性、間接性、附隨性或懲罰性損害或損失,Microsoft 概不承擔任何責任。
此資料集是根據 Microsoft 接收來源資料的原始條款所提供。 資料集可能包含源自 Microsoft 的資料。
此資料集的來源是美國勞工統計局 (BLS) 所發佈的目前就業統計資料 - CES (全國) 資料。 如需此資料集相關的使用條款及條件,請參閱 Copyright Information (連結與著作權資訊) 及 Important Web Site Notices (重要網站聲明)。
儲存位置
此資料集儲存於美國東部 Azure 區域。 建議您在美國東部配置計算資源,以確保同質性。
相關資料集
- US State Employment Hours and Earnings (美國各州的工時與工資)
- US Local Area Unemployment Statistics (美國各地區域的失業統計資料)
- US Labor Force Statistics (美國勞動力統計資料)
資料行
名稱 | 資料類型 | 唯一 | Values (sample) | 描述 |
---|---|---|---|---|
data_type_code | 字串 | 37 | 1 10 | 請參閱https://download.bls.gov/pub/time.series/ce/ce.datatype |
data_type_text | 字串 | 37 | ALL EMPLOYEES, THOUSANDS WOMEN EMPLOYEES, THOUSANDS | 請參閱https://download.bls.gov/pub/time.series/ce/ce.datatype |
footnote_codes | 字串 | 2 | nan P | |
industry_code | 字串 | 902 | 30000000 32000000 | 所涵蓋的不同產業。 請參閱https://download.bls.gov/pub/time.series/ce/ce.industry |
industry_name | 字串 | 895 | Nondurable goods Durable goods | 所涵蓋的不同產業。 請參閱https://download.bls.gov/pub/time.series/ce/ce.industry |
Period | 字串 | 13 | M03 M06 | 請參閱https://download.bls.gov/pub/time.series/ce/ce.period |
seasonal | 字串 | 2 | U S | |
series_id | 字串 | 26,021 | CEU3100000008 CEU9091912001 | 資料集中提供的不同資料數列類型。 請參閱https://download.bls.gov/pub/time.series/ce/ce.series |
series_title | 字串 | 25,685 | All employees, thousands, durable goods, not seasonally adjusted All employees, thousands, nondurable goods, not seasonally adjusted | 資料集中提供之不同資料數列類型的標題。 請參閱https://download.bls.gov/pub/time.series/ce/ce.series |
supersector_code | 字串 | 22 | 31 60 | 較高層級的產業或部門分類。 請參閱https://download.bls.gov/pub/time.series/ce/ce.supersector |
supersector_name | 字串 | 22 | Durable Goods Professional and business services | 較高層級的產業或部門分類。 請參閱https://download.bls.gov/pub/time.series/ce/ce.supersector |
value | float | 572,372 | 38.5 38.400001525878906 | |
year | int | 81 | 2017 2012 |
預覽
data_type_code | industry_code | supersector_code | series_id | year | Period | value | footnote_codes | seasonal | series_title | supersector_name | industry_name | data_type_text |
---|---|---|---|---|---|---|---|---|---|---|---|---|
26 | 5000000 | 5 | CES0500000026 | 下午 07:39 | M04 | 52 | NAN | S | All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted | Total private | Total private | ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS |
26 | 5000000 | 5 | CES0500000026 | 下午 07:39 | M05 | 65 | NAN | S | All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted | Total private | Total private | ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS |
26 | 5000000 | 5 | CES0500000026 | 下午 07:39 | M06 | 74 | NAN | S | All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted | Total private | Total private | ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS |
26 | 5000000 | 5 | CES0500000026 | 下午 07:39 | M07 | 103 | NAN | S | All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted | Total private | Total private | ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS |
26 | 5000000 | 5 | CES0500000026 | 下午 07:39 | M08 | 108 | NAN | S | All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted | Total private | Total private | ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS |
26 | 5000000 | 5 | CES0500000026 | 下午 07:39 | M09 | 152 | NAN | S | All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted | Total private | Total private | ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS |
26 | 5000000 | 5 | CES0500000026 | 下午 07:39 | M10 | 307 | NAN | S | All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted | Total private | Total private | ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS |
26 | 5000000 | 5 | CES0500000026 | 下午 07:39 | M11 | 248 | NAN | S | All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted | Total private | Total private | ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS |
資料存取
Azure Notebooks
# This is a package in preview.
from azureml.opendatasets import UsLaborEHENational
usLaborEHENational = UsLaborEHENational()
usLaborEHENational_df = usLaborEHENational.to_pandas_dataframe()
usLaborEHENational_df.info()
Azure Databricks
# This is a package in preview.
from azureml.opendatasets import UsLaborEHENational
usLaborEHENational = UsLaborEHENational()
usLaborEHENational_df = usLaborEHENational.to_spark_dataframe()
display(usLaborEHENational_df.limit(5))
Azure Synapse
此平台/封裝組合沒有可用的樣本。
下一步
檢視開放資料集目錄中的其餘資料集。