共用方式為


US National Employment Hours and Earnings (美國全國的工時與工資)

目前就業統計 (CES) 計劃會產生詳細的美國非農就業產業預估值、工作時數和工作者的薪資收入。

注意

Microsoft 依「現況」提供 Azure 開放資料集。 針對 貴用戶對資料集的使用方式,Microsoft 不提供任何明示或默示的擔保、保證或條件。 在 貴用戶當地法律允許的範圍內,針對因使用資料集而導致的任何直接性、衍生性、特殊性、間接性、附隨性或懲罰性損害或損失,Microsoft 概不承擔任何責任。

此資料集是根據 Microsoft 接收來源資料的原始條款所提供。 資料集可能包含源自 Microsoft 的資料。

讀我檔案是包含此資料集詳細資訊的檔案,位於原始資料集位置

此資料集的來源是美國勞工統計局 (BLS) 所發佈的目前就業統計資料 - CES (全國) 資料。 如需此資料集相關的使用條款及條件,請參閱 Copyright Information (連結與著作權資訊) 及 Important Web Site Notices (重要網站聲明)。

儲存位置

此資料集儲存於美國東部 Azure 區域。 建議您在美國東部配置計算資源,以確保同質性。

資料行

名稱 資料類型 唯一 Values (sample) 描述
data_type_code 字串 37 1 10 請參閱https://download.bls.gov/pub/time.series/ce/ce.datatype
data_type_text 字串 37 ALL EMPLOYEES, THOUSANDS WOMEN EMPLOYEES, THOUSANDS 請參閱https://download.bls.gov/pub/time.series/ce/ce.datatype
footnote_codes 字串 2 nan P
industry_code 字串 902 30000000 32000000 所涵蓋的不同產業。 請參閱https://download.bls.gov/pub/time.series/ce/ce.industry
industry_name 字串 895 Nondurable goods Durable goods 所涵蓋的不同產業。 請參閱https://download.bls.gov/pub/time.series/ce/ce.industry
Period 字串 13 M03 M06 請參閱https://download.bls.gov/pub/time.series/ce/ce.period
seasonal 字串 2 U S
series_id 字串 26,021 CEU3100000008 CEU9091912001 資料集中提供的不同資料數列類型。 請參閱https://download.bls.gov/pub/time.series/ce/ce.series
series_title 字串 25,685 All employees, thousands, durable goods, not seasonally adjusted All employees, thousands, nondurable goods, not seasonally adjusted 資料集中提供之不同資料數列類型的標題。 請參閱https://download.bls.gov/pub/time.series/ce/ce.series
supersector_code 字串 22 31 60 較高層級的產業或部門分類。 請參閱https://download.bls.gov/pub/time.series/ce/ce.supersector
supersector_name 字串 22 Durable Goods Professional and business services 較高層級的產業或部門分類。 請參閱https://download.bls.gov/pub/time.series/ce/ce.supersector
value float 572,372 38.5 38.400001525878906
year int 81 2017 2012

預覽​​

data_type_code industry_code supersector_code series_id year Period value footnote_codes seasonal series_title supersector_name industry_name data_type_text
26 5000000 5 CES0500000026 下午 07:39 M04 52 NAN S All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted Total private Total private ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS
26 5000000 5 CES0500000026 下午 07:39 M05 65 NAN S All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted Total private Total private ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS
26 5000000 5 CES0500000026 下午 07:39 M06 74 NAN S All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted Total private Total private ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS
26 5000000 5 CES0500000026 下午 07:39 M07 103 NAN S All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted Total private Total private ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS
26 5000000 5 CES0500000026 下午 07:39 M08 108 NAN S All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted Total private Total private ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS
26 5000000 5 CES0500000026 下午 07:39 M09 152 NAN S All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted Total private Total private ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS
26 5000000 5 CES0500000026 下午 07:39 M10 307 NAN S All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted Total private Total private ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS
26 5000000 5 CES0500000026 下午 07:39 M11 248 NAN S All employees, 3-month average change, seasonally adjusted, thousands, total private, seasonally adjusted Total private Total private ALL EMPLOYEES, 3-MONTH AVERAGE CHANGE, SEASONALLY ADJUSTED, THOUSANDS

資料存取

Azure Notebooks

# This is a package in preview.
from azureml.opendatasets import UsLaborEHENational

usLaborEHENational = UsLaborEHENational()
usLaborEHENational_df = usLaborEHENational.to_pandas_dataframe()
usLaborEHENational_df.info()

Azure Databricks

# This is a package in preview.
from azureml.opendatasets import UsLaborEHENational

usLaborEHENational = UsLaborEHENational()
usLaborEHENational_df = usLaborEHENational.to_spark_dataframe()
display(usLaborEHENational_df.limit(5))

Azure Synapse

此平台/封裝組合沒有可用的樣本。

下一步

檢視開放資料集目錄中的其餘資料集。