操作说明: 聊天完成代理 (实验性)

警告

语义内核代理框架是实验性的,仍在开发中,可能会更改。

概述

在此示例中,我们将探讨如何配置插件以访问 GitHub API,并向聊天完成代理提供模板化说明,以回答有关 GitHub 存储库的问题。 该方法将分步分解为高光编码过程的关键部分。 作为任务的一部分,代理将在响应中提供文档引文。

流式处理将用于传送代理的响应。 这将在任务进行时提供实时更新。

入门

在继续执行功能编码之前,请确保开发环境已完全设置和配置。

首先创建 控制台 项目。 然后,包括以下包引用,以确保所有必需的依赖项都可用。

若要从命令行添加包依赖项,请使用 dotnet 以下命令:

dotnet add package Azure.Identity
dotnet add package Microsoft.Extensions.Configuration
dotnet add package Microsoft.Extensions.Configuration.Binder
dotnet add package Microsoft.Extensions.Configuration.UserSecrets
dotnet add package Microsoft.Extensions.Configuration.EnvironmentVariables
dotnet add package Microsoft.SemanticKernel.Connectors.AzureOpenAI
dotnet add package Microsoft.SemanticKernel.Agents.Core --prerelease

如果在 Visual Studio 中管理 NuGet 包,请确保Include prerelease选中。

项目文件 (.csproj) 应包含以下 PackageReference 定义:

  <ItemGroup>
    <PackageReference Include="Azure.Identity" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.UserSecrets" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.EnvironmentVariables" Version="<stable>" />
    <PackageReference Include="Microsoft.SemanticKernel.Agents.Core" Version="<latest>" />
    <PackageReference Include="Microsoft.SemanticKernel.Connectors.AzureOpenAI" Version="<latest>" />
  </ItemGroup>

代理框架是实验性的,需要警告抑制。 这可以作为项目文件(.csproj):

  <PropertyGroup>
    <NoWarn>$(NoWarn);CA2007;IDE1006;SKEXP0001;SKEXP0110;OPENAI001</NoWarn>
  </PropertyGroup>

此外,从语义内核LearnResources项目复制 GitHub 插件和模型(GitHubPlugin.cs以及)。GitHubModels.cs 在项目文件夹中添加这些文件。

首先创建一个将保存脚本(.py 文件)和示例资源的文件夹。 在文件顶部 .py 包括以下导入:

import asyncio
import os
import sys
from datetime import datetime

from semantic_kernel.agents import ChatCompletionAgent
from semantic_kernel.connectors.ai.function_choice_behavior import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.contents.chat_history import ChatHistory
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.kernel import Kernel

# Adjust the sys.path so we can use the GitHubPlugin and GitHubSettings classes
# This is so we can run the code from the samples/learn_resources/agent_docs directory
# If you are running code from your own project, you may not need need to do this.
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))

from plugins.GithubPlugin.github import GitHubPlugin, GitHubSettings  # noqa: E402

此外,从语义内核LearnResources项目复制 GitHub 插件和模型(github.py)。 在项目文件夹中添加这些文件。

代理当前在 Java 中不可用。

配置

此示例需要配置设置才能连接到远程服务。 需要为 Open AI 或 Azure Open AI 以及 GitHub 定义设置

注意:有关 GitHub 个人访问令牌的信息,请参阅: 管理个人访问令牌

# Open AI
dotnet user-secrets set "OpenAISettings:ApiKey" "<api-key>"
dotnet user-secrets set "OpenAISettings:ChatModel" "gpt-4o"

# Azure Open AI
dotnet user-secrets set "AzureOpenAISettings:ApiKey" "<api-key>" # Not required if using token-credential
dotnet user-secrets set "AzureOpenAISettings:Endpoint" "<model-endpoint>"
dotnet user-secrets set "AzureOpenAISettings:ChatModelDeployment" "gpt-4o"

# GitHub
dotnet user-secrets set "GitHubSettings:BaseUrl" "https://api.github.com"
dotnet user-secrets set "GitHubSettings:Token" "<personal access token>"

以下类在所有代理示例中均使用。 请确保将其包含在项目中,以确保适当的功能。 此类充当以下示例的基础组件。

using System.Reflection;
using Microsoft.Extensions.Configuration;

namespace AgentsSample;

public class Settings
{
    private readonly IConfigurationRoot configRoot;

    private AzureOpenAISettings azureOpenAI;
    private OpenAISettings openAI;

    public AzureOpenAISettings AzureOpenAI => this.azureOpenAI ??= this.GetSettings<Settings.AzureOpenAISettings>();
    public OpenAISettings OpenAI => this.openAI ??= this.GetSettings<Settings.OpenAISettings>();

    public class OpenAISettings
    {
        public string ChatModel { get; set; } = string.Empty;
        public string ApiKey { get; set; } = string.Empty;
    }

    public class AzureOpenAISettings
    {
        public string ChatModelDeployment { get; set; } = string.Empty;
        public string Endpoint { get; set; } = string.Empty;
        public string ApiKey { get; set; } = string.Empty;
    }

    public TSettings GetSettings<TSettings>() =>
        this.configRoot.GetRequiredSection(typeof(TSettings).Name).Get<TSettings>()!;

    public Settings()
    {
        this.configRoot =
            new ConfigurationBuilder()
                .AddEnvironmentVariables()
                .AddUserSecrets(Assembly.GetExecutingAssembly(), optional: true)
                .Build();
    }
}

运行示例代码的正确配置入门的最快方法是在项目的根目录(运行脚本的位置)创建 .env 文件。

.env 文件中为 Azure OpenAI 或 OpenAI 配置以下设置:

AZURE_OPENAI_API_KEY="..."
AZURE_OPENAI_ENDPOINT="https://..."
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_API_VERSION="..."

OPENAI_API_KEY="sk-..."
OPENAI_ORG_ID=""
OPENAI_CHAT_MODEL_ID=""

配置后,相应的 AI 服务类将选取所需的变量,并在实例化期间使用这些变量。

代理当前在 Java 中不可用。

编码

此示例的编码过程涉及:

  1. 安装程序 - 初始化设置和插件。
  2. 代理 定义 - 使用模板化说明和插件创建 聊天完成代理
  3. 聊天循环 - 编写驱动用户/代理交互的循环。

最终部分提供了完整的示例代码。 有关完整实现,请参阅该部分。

安装

在创建 聊天完成代理之前,必须初始化配置设置、插件和 内核

Settings初始化在上一配置部分中引用的类。

Settings settings = new();

代理当前在 Java 中不可用。

使用插件的设置初始化插件。

此时会显示一条消息来指示进度。

Console.WriteLine("Initialize plugins...");
GitHubSettings githubSettings = settings.GetSettings<GitHubSettings>();
GitHubPlugin githubPlugin = new(githubSettings);
gh_settings = GitHubSettings(
    token="<PAT value>"
)
kernel.add_plugin(GitHubPlugin(settings=gh_settings), plugin_name="github")

代理当前在 Java 中不可用。

现在,使用以前IChatCompletionServiceGitHubPlugin创建的实例初始化Kernel实例。

Console.WriteLine("Creating kernel...");
IKernelBuilder builder = Kernel.CreateBuilder();

builder.AddAzureOpenAIChatCompletion(
    settings.AzureOpenAI.ChatModelDeployment,
    settings.AzureOpenAI.Endpoint,
    new AzureCliCredential());

builder.Plugins.AddFromObject(githubPlugin);

Kernel kernel = builder.Build();
kernel = Kernel()

# Add the AzureChatCompletion AI Service to the Kernel
service_id = "agent"
kernel.add_service(AzureChatCompletion(service_id=service_id))

settings = kernel.get_prompt_execution_settings_from_service_id(service_id=service_id)
# Configure the function choice behavior to auto invoke kernel functions
settings.function_choice_behavior = FunctionChoiceBehavior.Auto()

代理当前在 Java 中不可用。

代理定义

最后,我们已准备好使用聊天完成代理的说明、关联的内核以及默认参数和执行设置实例化聊天完成代理。 在这种情况下,我们希望自动执行任何插件函数。

Console.WriteLine("Defining agent...");
ChatCompletionAgent agent =
    new()
    {
        Name = "SampleAssistantAgent",
        Instructions =
            """
            You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
            You are also able to access the profile of the active user.

            Use the current date and time to provide up-to-date details or time-sensitive responses.

            The repository you are querying is a public repository with the following name: {{$repository}}

            The current date and time is: {{$now}}. 
            """,
        Kernel = kernel,
        Arguments =
            new KernelArguments(new AzureOpenAIPromptExecutionSettings() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() })
            {
                { "repository", "microsoft/semantic-kernel" }
            }
    };

Console.WriteLine("Ready!");
agent = ChatCompletionAgent(
    service_id="agent",
    kernel=kernel,
    name="SampleAssistantAgent",
    instructions=f"""
        You are an agent designed to query and retrieve information from a single GitHub repository in a read-only 
        manner.
        You are also able to access the profile of the active user.

        Use the current date and time to provide up-to-date details or time-sensitive responses.

        The repository you are querying is a public repository with the following name: microsoft/semantic-kernel

        The current date and time is: {current_time}. 
        """,
    execution_settings=settings,
)

代理当前在 Java 中不可用。

聊天循环

最后,我们能够协调用户和 代理之间的交互。 首先创建 聊天历史记录 对象来维护聊天状态并创建空循环。

ChatHistory history = [];
bool isComplete = false;
do
{
    // processing logic here
} while (!isComplete);
history = ChatHistory()
is_complete: bool = False
while not is_complete:
    # processing logic here

代理当前在 Java 中不可用。

现在,让我们在上一循环中捕获用户输入。 在这种情况下,将忽略空输入,术语 EXIT 将指示会话已完成。 有效输入将作为用户消息添加到聊天历史记录中。

Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
    continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
    isComplete = true;
    break;
}

history.Add(new ChatMessageContent(AuthorRole.User, input));

Console.WriteLine();
user_input = input("User:> ")
if not user_input:
    continue

if user_input.lower() == "exit":
    is_complete = True
    break

history.add_message(ChatMessageContent(role=AuthorRole.USER, content=user_input))

代理当前在 Java 中不可用。

若要生成 对用户输入的代理 响应,请使用 Arguments 调用代理,以提供指定当前日期和时间的最终模板参数。

然后,代理响应会显示给用户。

DateTime now = DateTime.Now;
KernelArguments arguments =
    new()
    {
        { "now", $"{now.ToShortDateString()} {now.ToShortTimeString()}" }
    };
await foreach (ChatMessageContent response in agent.InvokeAsync(history, arguments))
{
    Console.WriteLine($"{response.Content}");
}

即将发布

代理当前在 Java 中不可用。

Final

将所有步骤组合在一起,我们提供了此示例的最终代码。 下面提供了完整的实现。

using System;
using System.Threading.Tasks;
using Azure.Identity;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents;
using Microsoft.SemanticKernel.ChatCompletion;
using Microsoft.SemanticKernel.Connectors.AzureOpenAI;
using Plugins;

namespace AgentsSample;

public static class Program
{
    public static async Task Main()
    {
        // Load configuration from environment variables or user secrets.
        Settings settings = new();

        Console.WriteLine("Initialize plugins...");
        GitHubSettings githubSettings = settings.GetSettings<GitHubSettings>();
        GitHubPlugin githubPlugin = new(githubSettings);

        Console.WriteLine("Creating kernel...");
        IKernelBuilder builder = Kernel.CreateBuilder();

        builder.AddAzureOpenAIChatCompletion(
            settings.AzureOpenAI.ChatModelDeployment,
            settings.AzureOpenAI.Endpoint,
            new AzureCliCredential());

        builder.Plugins.AddFromObject(githubPlugin);

        Kernel kernel = builder.Build();

        Console.WriteLine("Defining agent...");
        ChatCompletionAgent agent =
            new()
            {
                Name = "SampleAssistantAgent",
                Instructions =
                        """
                        You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
                        You are also able to access the profile of the active user.

                        Use the current date and time to provide up-to-date details or time-sensitive responses.

                        The repository you are querying is a public repository with the following name: {{$repository}}

                        The current date and time is: {{$now}}. 
                        """,
                Kernel = kernel,
                Arguments =
                    new KernelArguments(new AzureOpenAIPromptExecutionSettings() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() })
                    {
                        { "repository", "microsoft/semantic-kernel" }
                    }
            };

        Console.WriteLine("Ready!");

        ChatHistory history = [];
        bool isComplete = false;
        do
        {
            Console.WriteLine();
            Console.Write("> ");
            string input = Console.ReadLine();
            if (string.IsNullOrWhiteSpace(input))
            {
                continue;
            }
            if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
            {
                isComplete = true;
                break;
            }

            history.Add(new ChatMessageContent(AuthorRole.User, input));

            Console.WriteLine();

            DateTime now = DateTime.Now;
            KernelArguments arguments =
                new()
                {
                    { "now", $"{now.ToShortDateString()} {now.ToShortTimeString()}" }
                };
            await foreach (ChatMessageContent response in agent.InvokeAsync(history, arguments))
            {
                // Display response.
                Console.WriteLine($"{response.Content}");
            }

        } while (!isComplete);
    }
}
import asyncio
import os
import sys
from datetime import datetime

from semantic_kernel.agents import ChatCompletionAgent
from semantic_kernel.connectors.ai.function_choice_behavior import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.contents.chat_history import ChatHistory
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.kernel import Kernel

# Adjust the sys.path so we can use the GitHubPlugin and GitHubSettings classes
# This is so we can run the code from the samples/learn_resources/agent_docs directory
# If you are running code from your own project, you may not need need to do this.
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))

from plugins.GithubPlugin.github import GitHubPlugin, GitHubSettings  # noqa: E402

###################################################################
# The following sample demonstrates how to create a simple,       #
# ChatCompletionAgent to use a GitHub plugin to interact          #
# with the GitHub API.                                            #
###################################################################


async def main():
    kernel = Kernel()

    # Add the AzureChatCompletion AI Service to the Kernel
    service_id = "agent"
    kernel.add_service(AzureChatCompletion(service_id=service_id))

    settings = kernel.get_prompt_execution_settings_from_service_id(service_id=service_id)
    # Configure the function choice behavior to auto invoke kernel functions
    settings.function_choice_behavior = FunctionChoiceBehavior.Auto()

    # Set your GitHub Personal Access Token (PAT) value here
    gh_settings = GitHubSettings(token="<PAT value>")
    kernel.add_plugin(plugin=GitHubPlugin(gh_settings), plugin_name="GithubPlugin")

    current_time = datetime.now().isoformat()

    # Create the agent
    agent = ChatCompletionAgent(
        service_id="agent",
        kernel=kernel,
        name="SampleAssistantAgent",
        instructions=f"""
            You are an agent designed to query and retrieve information from a single GitHub repository in a read-only 
            manner.
            You are also able to access the profile of the active user.

            Use the current date and time to provide up-to-date details or time-sensitive responses.

            The repository you are querying is a public repository with the following name: microsoft/semantic-kernel

            The current date and time is: {current_time}. 
            """,
        execution_settings=settings,
    )

    history = ChatHistory()
    is_complete: bool = False
    while not is_complete:
        user_input = input("User:> ")
        if not user_input:
            continue

        if user_input.lower() == "exit":
            is_complete = True
            break

        history.add_message(ChatMessageContent(role=AuthorRole.USER, content=user_input))

        async for response in agent.invoke(history=history):
            print(f"{response.content}")


if __name__ == "__main__":
    asyncio.run(main())

代理当前在 Java 中不可用。