操作说明: 聊天完成代理 (实验性)
警告
语义内核代理框架是实验性的,仍在开发中,可能会更改。
概述
在此示例中,我们将探讨如何配置插件以访问 GitHub API,并向聊天完成代理提供模板化说明,以回答有关 GitHub 存储库的问题。 该方法将分步分解为高光编码过程的关键部分。 作为任务的一部分,代理将在响应中提供文档引文。
流式处理将用于传送代理的响应。 这将在任务进行时提供实时更新。
入门
在继续执行功能编码之前,请确保开发环境已完全设置和配置。
首先创建 控制台 项目。 然后,包括以下包引用,以确保所有必需的依赖项都可用。
若要从命令行添加包依赖项,请使用 dotnet
以下命令:
dotnet add package Azure.Identity
dotnet add package Microsoft.Extensions.Configuration
dotnet add package Microsoft.Extensions.Configuration.Binder
dotnet add package Microsoft.Extensions.Configuration.UserSecrets
dotnet add package Microsoft.Extensions.Configuration.EnvironmentVariables
dotnet add package Microsoft.SemanticKernel.Connectors.AzureOpenAI
dotnet add package Microsoft.SemanticKernel.Agents.Core --prerelease
如果在 Visual Studio 中管理 NuGet 包,请确保
Include prerelease
已选中。
项目文件 (.csproj
) 应包含以下 PackageReference
定义:
<ItemGroup>
<PackageReference Include="Azure.Identity" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.UserSecrets" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.EnvironmentVariables" Version="<stable>" />
<PackageReference Include="Microsoft.SemanticKernel.Agents.Core" Version="<latest>" />
<PackageReference Include="Microsoft.SemanticKernel.Connectors.AzureOpenAI" Version="<latest>" />
</ItemGroup>
代理框架是实验性的,需要警告抑制。 这可以作为项目文件(.csproj
):
<PropertyGroup>
<NoWarn>$(NoWarn);CA2007;IDE1006;SKEXP0001;SKEXP0110;OPENAI001</NoWarn>
</PropertyGroup>
此外,从语义内核LearnResources
项目复制 GitHub 插件和模型(GitHubPlugin.cs
以及)。GitHubModels.cs
在项目文件夹中添加这些文件。
首先创建一个将保存脚本(.py
文件)和示例资源的文件夹。 在文件顶部 .py
包括以下导入:
import asyncio
import os
import sys
from datetime import datetime
from semantic_kernel.agents import ChatCompletionAgent
from semantic_kernel.connectors.ai.function_choice_behavior import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.contents.chat_history import ChatHistory
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.kernel import Kernel
# Adjust the sys.path so we can use the GitHubPlugin and GitHubSettings classes
# This is so we can run the code from the samples/learn_resources/agent_docs directory
# If you are running code from your own project, you may not need need to do this.
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from plugins.GithubPlugin.github import GitHubPlugin, GitHubSettings # noqa: E402
此外,从语义内核LearnResources
项目复制 GitHub 插件和模型(github.py
)。 在项目文件夹中添加这些文件。
代理当前在 Java 中不可用。
配置
此示例需要配置设置才能连接到远程服务。 需要为 Open AI 或 Azure Open AI 以及 GitHub 定义设置。
注意:有关 GitHub 个人访问令牌的信息,请参阅: 管理个人访问令牌。
# Open AI
dotnet user-secrets set "OpenAISettings:ApiKey" "<api-key>"
dotnet user-secrets set "OpenAISettings:ChatModel" "gpt-4o"
# Azure Open AI
dotnet user-secrets set "AzureOpenAISettings:ApiKey" "<api-key>" # Not required if using token-credential
dotnet user-secrets set "AzureOpenAISettings:Endpoint" "<model-endpoint>"
dotnet user-secrets set "AzureOpenAISettings:ChatModelDeployment" "gpt-4o"
# GitHub
dotnet user-secrets set "GitHubSettings:BaseUrl" "https://api.github.com"
dotnet user-secrets set "GitHubSettings:Token" "<personal access token>"
以下类在所有代理示例中均使用。 请确保将其包含在项目中,以确保适当的功能。 此类充当以下示例的基础组件。
using System.Reflection;
using Microsoft.Extensions.Configuration;
namespace AgentsSample;
public class Settings
{
private readonly IConfigurationRoot configRoot;
private AzureOpenAISettings azureOpenAI;
private OpenAISettings openAI;
public AzureOpenAISettings AzureOpenAI => this.azureOpenAI ??= this.GetSettings<Settings.AzureOpenAISettings>();
public OpenAISettings OpenAI => this.openAI ??= this.GetSettings<Settings.OpenAISettings>();
public class OpenAISettings
{
public string ChatModel { get; set; } = string.Empty;
public string ApiKey { get; set; } = string.Empty;
}
public class AzureOpenAISettings
{
public string ChatModelDeployment { get; set; } = string.Empty;
public string Endpoint { get; set; } = string.Empty;
public string ApiKey { get; set; } = string.Empty;
}
public TSettings GetSettings<TSettings>() =>
this.configRoot.GetRequiredSection(typeof(TSettings).Name).Get<TSettings>()!;
public Settings()
{
this.configRoot =
new ConfigurationBuilder()
.AddEnvironmentVariables()
.AddUserSecrets(Assembly.GetExecutingAssembly(), optional: true)
.Build();
}
}
运行示例代码的正确配置入门的最快方法是在项目的根目录(运行脚本的位置)创建 .env
文件。
在 .env
文件中为 Azure OpenAI 或 OpenAI 配置以下设置:
AZURE_OPENAI_API_KEY="..."
AZURE_OPENAI_ENDPOINT="https://..."
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_API_VERSION="..."
OPENAI_API_KEY="sk-..."
OPENAI_ORG_ID=""
OPENAI_CHAT_MODEL_ID=""
配置后,相应的 AI 服务类将选取所需的变量,并在实例化期间使用这些变量。
代理当前在 Java 中不可用。
编码
此示例的编码过程涉及:
最终部分提供了完整的示例代码。 有关完整实现,请参阅该部分。
安装
在创建 聊天完成代理之前,必须初始化配置设置、插件和 内核 。
Settings
初始化在上一配置部分中引用的类。
Settings settings = new();
代理当前在 Java 中不可用。
使用插件的设置初始化插件。
此时会显示一条消息来指示进度。
Console.WriteLine("Initialize plugins...");
GitHubSettings githubSettings = settings.GetSettings<GitHubSettings>();
GitHubPlugin githubPlugin = new(githubSettings);
gh_settings = GitHubSettings(
token="<PAT value>"
)
kernel.add_plugin(GitHubPlugin(settings=gh_settings), plugin_name="github")
代理当前在 Java 中不可用。
现在,使用以前IChatCompletionService
GitHubPlugin
创建的实例初始化Kernel
实例。
Console.WriteLine("Creating kernel...");
IKernelBuilder builder = Kernel.CreateBuilder();
builder.AddAzureOpenAIChatCompletion(
settings.AzureOpenAI.ChatModelDeployment,
settings.AzureOpenAI.Endpoint,
new AzureCliCredential());
builder.Plugins.AddFromObject(githubPlugin);
Kernel kernel = builder.Build();
kernel = Kernel()
# Add the AzureChatCompletion AI Service to the Kernel
service_id = "agent"
kernel.add_service(AzureChatCompletion(service_id=service_id))
settings = kernel.get_prompt_execution_settings_from_service_id(service_id=service_id)
# Configure the function choice behavior to auto invoke kernel functions
settings.function_choice_behavior = FunctionChoiceBehavior.Auto()
代理当前在 Java 中不可用。
代理定义
最后,我们已准备好使用聊天完成代理的说明、关联的内核以及默认参数和执行设置实例化聊天完成代理。 在这种情况下,我们希望自动执行任何插件函数。
Console.WriteLine("Defining agent...");
ChatCompletionAgent agent =
new()
{
Name = "SampleAssistantAgent",
Instructions =
"""
You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
You are also able to access the profile of the active user.
Use the current date and time to provide up-to-date details or time-sensitive responses.
The repository you are querying is a public repository with the following name: {{$repository}}
The current date and time is: {{$now}}.
""",
Kernel = kernel,
Arguments =
new KernelArguments(new AzureOpenAIPromptExecutionSettings() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() })
{
{ "repository", "microsoft/semantic-kernel" }
}
};
Console.WriteLine("Ready!");
agent = ChatCompletionAgent(
service_id="agent",
kernel=kernel,
name="SampleAssistantAgent",
instructions=f"""
You are an agent designed to query and retrieve information from a single GitHub repository in a read-only
manner.
You are also able to access the profile of the active user.
Use the current date and time to provide up-to-date details or time-sensitive responses.
The repository you are querying is a public repository with the following name: microsoft/semantic-kernel
The current date and time is: {current_time}.
""",
execution_settings=settings,
)
代理当前在 Java 中不可用。
聊天循环
最后,我们能够协调用户和 代理之间的交互。 首先创建 聊天历史记录 对象来维护聊天状态并创建空循环。
ChatHistory history = [];
bool isComplete = false;
do
{
// processing logic here
} while (!isComplete);
history = ChatHistory()
is_complete: bool = False
while not is_complete:
# processing logic here
代理当前在 Java 中不可用。
现在,让我们在上一循环中捕获用户输入。 在这种情况下,将忽略空输入,术语 EXIT
将指示会话已完成。 有效输入将作为用户消息添加到聊天历史记录中。
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
isComplete = true;
break;
}
history.Add(new ChatMessageContent(AuthorRole.User, input));
Console.WriteLine();
user_input = input("User:> ")
if not user_input:
continue
if user_input.lower() == "exit":
is_complete = True
break
history.add_message(ChatMessageContent(role=AuthorRole.USER, content=user_input))
代理当前在 Java 中不可用。
若要生成 对用户输入的代理 响应,请使用 Arguments 调用代理,以提供指定当前日期和时间的最终模板参数。
然后,代理响应会显示给用户。
DateTime now = DateTime.Now;
KernelArguments arguments =
new()
{
{ "now", $"{now.ToShortDateString()} {now.ToShortTimeString()}" }
};
await foreach (ChatMessageContent response in agent.InvokeAsync(history, arguments))
{
Console.WriteLine($"{response.Content}");
}
即将发布
代理当前在 Java 中不可用。
Final
将所有步骤组合在一起,我们提供了此示例的最终代码。 下面提供了完整的实现。
using System;
using System.Threading.Tasks;
using Azure.Identity;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents;
using Microsoft.SemanticKernel.ChatCompletion;
using Microsoft.SemanticKernel.Connectors.AzureOpenAI;
using Plugins;
namespace AgentsSample;
public static class Program
{
public static async Task Main()
{
// Load configuration from environment variables or user secrets.
Settings settings = new();
Console.WriteLine("Initialize plugins...");
GitHubSettings githubSettings = settings.GetSettings<GitHubSettings>();
GitHubPlugin githubPlugin = new(githubSettings);
Console.WriteLine("Creating kernel...");
IKernelBuilder builder = Kernel.CreateBuilder();
builder.AddAzureOpenAIChatCompletion(
settings.AzureOpenAI.ChatModelDeployment,
settings.AzureOpenAI.Endpoint,
new AzureCliCredential());
builder.Plugins.AddFromObject(githubPlugin);
Kernel kernel = builder.Build();
Console.WriteLine("Defining agent...");
ChatCompletionAgent agent =
new()
{
Name = "SampleAssistantAgent",
Instructions =
"""
You are an agent designed to query and retrieve information from a single GitHub repository in a read-only manner.
You are also able to access the profile of the active user.
Use the current date and time to provide up-to-date details or time-sensitive responses.
The repository you are querying is a public repository with the following name: {{$repository}}
The current date and time is: {{$now}}.
""",
Kernel = kernel,
Arguments =
new KernelArguments(new AzureOpenAIPromptExecutionSettings() { FunctionChoiceBehavior = FunctionChoiceBehavior.Auto() })
{
{ "repository", "microsoft/semantic-kernel" }
}
};
Console.WriteLine("Ready!");
ChatHistory history = [];
bool isComplete = false;
do
{
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
isComplete = true;
break;
}
history.Add(new ChatMessageContent(AuthorRole.User, input));
Console.WriteLine();
DateTime now = DateTime.Now;
KernelArguments arguments =
new()
{
{ "now", $"{now.ToShortDateString()} {now.ToShortTimeString()}" }
};
await foreach (ChatMessageContent response in agent.InvokeAsync(history, arguments))
{
// Display response.
Console.WriteLine($"{response.Content}");
}
} while (!isComplete);
}
}
import asyncio
import os
import sys
from datetime import datetime
from semantic_kernel.agents import ChatCompletionAgent
from semantic_kernel.connectors.ai.function_choice_behavior import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
from semantic_kernel.contents.chat_history import ChatHistory
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.kernel import Kernel
# Adjust the sys.path so we can use the GitHubPlugin and GitHubSettings classes
# This is so we can run the code from the samples/learn_resources/agent_docs directory
# If you are running code from your own project, you may not need need to do this.
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from plugins.GithubPlugin.github import GitHubPlugin, GitHubSettings # noqa: E402
###################################################################
# The following sample demonstrates how to create a simple, #
# ChatCompletionAgent to use a GitHub plugin to interact #
# with the GitHub API. #
###################################################################
async def main():
kernel = Kernel()
# Add the AzureChatCompletion AI Service to the Kernel
service_id = "agent"
kernel.add_service(AzureChatCompletion(service_id=service_id))
settings = kernel.get_prompt_execution_settings_from_service_id(service_id=service_id)
# Configure the function choice behavior to auto invoke kernel functions
settings.function_choice_behavior = FunctionChoiceBehavior.Auto()
# Set your GitHub Personal Access Token (PAT) value here
gh_settings = GitHubSettings(token="<PAT value>")
kernel.add_plugin(plugin=GitHubPlugin(gh_settings), plugin_name="GithubPlugin")
current_time = datetime.now().isoformat()
# Create the agent
agent = ChatCompletionAgent(
service_id="agent",
kernel=kernel,
name="SampleAssistantAgent",
instructions=f"""
You are an agent designed to query and retrieve information from a single GitHub repository in a read-only
manner.
You are also able to access the profile of the active user.
Use the current date and time to provide up-to-date details or time-sensitive responses.
The repository you are querying is a public repository with the following name: microsoft/semantic-kernel
The current date and time is: {current_time}.
""",
execution_settings=settings,
)
history = ChatHistory()
is_complete: bool = False
while not is_complete:
user_input = input("User:> ")
if not user_input:
continue
if user_input.lower() == "exit":
is_complete = True
break
history.add_message(ChatMessageContent(role=AuthorRole.USER, content=user_input))
async for response in agent.invoke(history=history):
print(f"{response.content}")
if __name__ == "__main__":
asyncio.run(main())
代理当前在 Java 中不可用。