操作说明: 打开 AI 助手代理 代码解释器(实验性)
警告
语义内核代理框架是实验性的,仍在开发中,可能会更改。
概述
在此示例中,我们将探讨如何使用 Open AI 助手代理的代码解释器工具来完成数据分析任务。 该方法将分步分解为高光编码过程的关键部分。 作为任务的一部分,代理将生成图像和文本响应。 这将演示此工具在执行定量分析方面的多功能性。
流式处理将用于传送代理的响应。 这将在任务进行时提供实时更新。
入门
在继续执行功能编码之前,请确保开发环境已完全设置和配置。
首先创建 控制台 项目。 然后,包括以下包引用,以确保所有必需的依赖项都可用。
若要从命令行添加包依赖项,请使用 dotnet
以下命令:
dotnet add package Azure.Identity
dotnet add package Microsoft.Extensions.Configuration
dotnet add package Microsoft.Extensions.Configuration.Binder
dotnet add package Microsoft.Extensions.Configuration.UserSecrets
dotnet add package Microsoft.Extensions.Configuration.EnvironmentVariables
dotnet add package Microsoft.SemanticKernel
dotnet add package Microsoft.SemanticKernel.Agents.OpenAI --prerelease
如果在 Visual Studio 中管理 NuGet 包,请确保
Include prerelease
已选中。
项目文件 (.csproj
) 应包含以下 PackageReference
定义:
<ItemGroup>
<PackageReference Include="Azure.Identity" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.UserSecrets" Version="<stable>" />
<PackageReference Include="Microsoft.Extensions.Configuration.EnvironmentVariables" Version="<stable>" />
<PackageReference Include="Microsoft.SemanticKernel" Version="<latest>" />
<PackageReference Include="Microsoft.SemanticKernel.Agents.OpenAI" Version="<latest>" />
</ItemGroup>
代理框架是实验性的,需要警告抑制。 这可以作为项目文件(.csproj
):
<PropertyGroup>
<NoWarn>$(NoWarn);CA2007;IDE1006;SKEXP0001;SKEXP0110;OPENAI001</NoWarn>
</PropertyGroup>
此外,从语义内核LearnResources
项目复制PopulationByAdmin1.csv
数据文件PopulationByCountry.csv
。 在项目文件夹中添加这些文件,并将其配置为将它们复制到输出目录:
<ItemGroup>
<None Include="PopulationByAdmin1.csv">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</None>
<None Include="PopulationByCountry.csv">
<CopyToOutputDirectory>Always</CopyToOutputDirectory>
</None>
</ItemGroup>
首先创建一个将保存脚本(.py
文件)和示例资源的文件夹。 在文件顶部 .py
包括以下导入:
import asyncio
import os
from semantic_kernel.agents.open_ai.azure_assistant_agent import AzureAssistantAgent
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.streaming_file_reference_content import StreamingFileReferenceContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.kernel import Kernel
此外,从语义内核LearnResources
项目复制PopulationByAdmin1.csv
数据文件PopulationByCountry.csv
。 在项目文件夹中添加这些文件。
代理当前在 Java 中不可用。
配置
此示例需要配置设置才能连接到远程服务。 需要定义 Open AI 或 Azure Open AI 的设置。
# Open AI
dotnet user-secrets set "OpenAISettings:ApiKey" "<api-key>"
dotnet user-secrets set "OpenAISettings:ChatModel" "gpt-4o"
# Azure Open AI
dotnet user-secrets set "AzureOpenAISettings:ApiKey" "<api-key>" # Not required if using token-credential
dotnet user-secrets set "AzureOpenAISettings:Endpoint" "<model-endpoint>"
dotnet user-secrets set "AzureOpenAISettings:ChatModelDeployment" "gpt-4o"
以下类在所有代理示例中均使用。 请确保将其包含在项目中,以确保适当的功能。 此类充当以下示例的基础组件。
using System.Reflection;
using Microsoft.Extensions.Configuration;
namespace AgentsSample;
public class Settings
{
private readonly IConfigurationRoot configRoot;
private AzureOpenAISettings azureOpenAI;
private OpenAISettings openAI;
public AzureOpenAISettings AzureOpenAI => this.azureOpenAI ??= this.GetSettings<Settings.AzureOpenAISettings>();
public OpenAISettings OpenAI => this.openAI ??= this.GetSettings<Settings.OpenAISettings>();
public class OpenAISettings
{
public string ChatModel { get; set; } = string.Empty;
public string ApiKey { get; set; } = string.Empty;
}
public class AzureOpenAISettings
{
public string ChatModelDeployment { get; set; } = string.Empty;
public string Endpoint { get; set; } = string.Empty;
public string ApiKey { get; set; } = string.Empty;
}
public TSettings GetSettings<TSettings>() =>
this.configRoot.GetRequiredSection(typeof(TSettings).Name).Get<TSettings>()!;
public Settings()
{
this.configRoot =
new ConfigurationBuilder()
.AddEnvironmentVariables()
.AddUserSecrets(Assembly.GetExecutingAssembly(), optional: true)
.Build();
}
}
运行示例代码的正确配置入门的最快方法是在项目的根目录(运行脚本的位置)创建 .env
文件。
在 .env
文件中为 Azure OpenAI 或 OpenAI 配置以下设置:
AZURE_OPENAI_API_KEY="..."
AZURE_OPENAI_ENDPOINT="https://..."
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_API_VERSION="..."
OPENAI_API_KEY="sk-..."
OPENAI_ORG_ID=""
OPENAI_CHAT_MODEL_ID=""
配置后,相应的 AI 服务类将选取所需的变量,并在实例化期间使用这些变量。
代理当前在 Java 中不可用。
编码
此示例的编码过程涉及:
最终部分提供了完整的示例代码。 有关完整实现,请参阅该部分。
安装
在创建 Open AI 助手代理之前,请确保配置设置可用并准备文件资源。
实例化 Settings
上一 配置 部分中引用的类。 使用设置还可以创建将用于代理定义和文件上传的设置OpenAIClientProvider
。
Settings settings = new();
OpenAIClientProvider clientProvider =
OpenAIClientProvider.ForAzureOpenAI(new AzureCliCredential(), new Uri(settings.AzureOpenAI.Endpoint));
代理当前在 Java 中不可用。
使用 OpenAIClientProvider
访问并上传上一配置部分中所述的两个数据文件,保留文件引用以供最终OpenAIFileClient
清理。
Console.WriteLine("Uploading files...");
OpenAIFileClient fileClient = clientProvider.Client.GetOpenAIFileClient();
OpenAIFile fileDataCountryDetail = await fileClient.UploadFileAsync("PopulationByAdmin1.csv", FileUploadPurpose.Assistants);
OpenAIFile fileDataCountryList = await fileClient.UploadFileAsync("PopulationByCountry.csv", FileUploadPurpose.Assistants);
# Let's form the file paths that we will later pass to the assistant
csv_file_path_1 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"PopulationByAdmin1.csv",
)
csv_file_path_2 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"PopulationByCountry.csv",
)
代理当前在 Java 中不可用。
代理定义
我们现在已准备好实例化 OpenAI 助手代理。 代理配置了其目标模型、 指令和 代码解释器 工具。 此外,我们显式将这两个数据文件与 代码解释器 工具相关联。
Console.WriteLine("Defining agent...");
OpenAIAssistantAgent agent =
await OpenAIAssistantAgent.CreateAsync(
clientProvider,
new OpenAIAssistantDefinition(settings.AzureOpenAI.ChatModelDeployment)
{
Name = "SampleAssistantAgent",
Instructions =
"""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
EnableCodeInterpreter = true,
CodeInterpreterFileIds = [fileDataCountryList.Id, fileDataCountryDetail.Id],
},
new Kernel());
agent = await AzureAssistantAgent.create(
kernel=Kernel(),
service_id="agent",
name="SampleAssistantAgent",
instructions="""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
enable_code_interpreter=True,
code_interpreter_filenames=[csv_file_path_1, csv_file_path_2],
)
代理当前在 Java 中不可用。
聊天循环
最后,我们能够协调用户和 代理之间的交互。 首先创建 助理线程 来维护聊天状态和创建空循环。
此外,请确保在执行结束时删除资源,以最大程度地减少不必要的费用。
Console.WriteLine("Creating thread...");
string threadId = await agent.CreateThreadAsync();
Console.WriteLine("Ready!");
try
{
bool isComplete = false;
List<string> fileIds = [];
do
{
} while (!isComplete);
}
finally
{
Console.WriteLine();
Console.WriteLine("Cleaning-up...");
await Task.WhenAll(
[
agent.DeleteThreadAsync(threadId),
agent.DeleteAsync(),
fileClient.DeleteFileAsync(fileDataCountryList.Id),
fileClient.DeleteFileAsync(fileDataCountryDetail.Id),
]);
}
print("Creating thread...")
thread_id = await agent.create_thread()
try:
is_complete: bool = False
file_ids: list[str] = []
while not is_complete:
# agent interaction logic here
finally:
print("Cleaning up resources...")
if agent is not None:
[await agent.delete_file(file_id) for file_id in agent.code_interpreter_file_ids]
await agent.delete_thread(thread_id)
await agent.delete()
代理当前在 Java 中不可用。
现在,让我们在上一循环中捕获用户输入。 在这种情况下,将忽略空输入,术语 EXIT
将指示会话已完成。 有效输入将作为用户消息添加到助手线程。
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
isComplete = true;
break;
}
await agent.AddChatMessageAsync(threadId, new ChatMessageContent(AuthorRole.User, input));
Console.WriteLine();
user_input = input("User:> ")
if not user_input:
continue
if user_input.lower() == "exit":
is_complete = True
break
await agent.add_chat_message(thread_id=thread_id, message=ChatMessageContent(role=AuthorRole.USER, content=user_input))
代理当前在 Java 中不可用。
在调用代理响应之前,让我们添加一些帮助程序方法来下载代理可能生成的任何文件。
在这里,我们将文件内容放置在系统定义的临时目录中,然后启动系统定义的查看器应用程序。
private static async Task DownloadResponseImageAsync(OpenAIFileClient client, ICollection<string> fileIds)
{
if (fileIds.Count > 0)
{
Console.WriteLine();
foreach (string fileId in fileIds)
{
await DownloadFileContentAsync(client, fileId, launchViewer: true);
}
}
}
private static async Task DownloadFileContentAsync(OpenAIFileClient client, string fileId, bool launchViewer = false)
{
OpenAIFile fileInfo = client.GetFile(fileId);
if (fileInfo.Purpose == FilePurpose.AssistantsOutput)
{
string filePath =
Path.Combine(
Path.GetTempPath(),
Path.GetFileName(Path.ChangeExtension(fileInfo.Filename, ".png")));
BinaryData content = await client.DownloadFileAsync(fileId);
await using FileStream fileStream = new(filePath, FileMode.CreateNew);
await content.ToStream().CopyToAsync(fileStream);
Console.WriteLine($"File saved to: {filePath}.");
if (launchViewer)
{
Process.Start(
new ProcessStartInfo
{
FileName = "cmd.exe",
Arguments = $"/C start {filePath}"
});
}
}
}
import os
async def download_file_content(agent, file_id: str):
try:
# Fetch the content of the file using the provided method
response_content = await agent.client.files.content(file_id)
# Get the current working directory of the file
current_directory = os.path.dirname(os.path.abspath(__file__))
# Define the path to save the image in the current directory
file_path = os.path.join(
current_directory, # Use the current directory of the file
f"{file_id}.png" # You can modify this to use the actual filename with proper extension
)
# Save content to a file asynchronously
with open(file_path, "wb") as file:
file.write(response_content.content)
print(f"File saved to: {file_path}")
except Exception as e:
print(f"An error occurred while downloading file {file_id}: {str(e)}")
async def download_response_image(agent, file_ids: list[str]):
if file_ids:
# Iterate over file_ids and download each one
for file_id in file_ids:
await download_file_content(agent, file_id)
代理当前在 Java 中不可用。
若要生成对用户输入的代理响应,请通过指定助手线程来调用代理。 在此示例中,我们选择流式响应并捕获任何生成的 文件引用 ,以便在响应周期结束时下载和查看。 请务必注意,生成的代码是通过响应消息中存在 元数据 密钥来标识的,这与对话回复区分开来。
bool isCode = false;
await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(threadId))
{
if (isCode != (response.Metadata?.ContainsKey(OpenAIAssistantAgent.CodeInterpreterMetadataKey) ?? false))
{
Console.WriteLine();
isCode = !isCode;
}
// Display response.
Console.Write($"{response.Content}");
// Capture file IDs for downloading.
fileIds.AddRange(response.Items.OfType<StreamingFileReferenceContent>().Select(item => item.FileId));
}
Console.WriteLine();
// Download any files referenced in the response.
await DownloadResponseImageAsync(fileClient, fileIds);
fileIds.Clear();
is_code: bool = False
async for response in agent.invoke(stream(thread_id=thread_id):
if is_code != metadata.get("code"):
print()
is_code = not is_code
print(f"{response.content})
file_ids.extend(
[item.file_id for item in response.items if isinstance(item, StreamingFileReferenceContent)]
)
print()
await download_response_image(agent, file_ids)
file_ids.clear()
代理当前在 Java 中不可用。
Final
将所有步骤组合在一起,我们提供了此示例的最终代码。 下面提供了完整的实现。
请尝试使用这些建议的输入:
- 比较文件以确定国家/地区数与总计数相比没有定义的州或省
- 为已定义州或省/地区的国家/地区创建表。 包括州或省的计数和总人口
- 为名称以相同字母开头的国家/地区提供条形图,并将 x 轴按最高计数排序(包括所有国家/地区)
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Azure.Identity;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents.OpenAI;
using Microsoft.SemanticKernel.ChatCompletion;
using OpenAI.Files;
namespace AgentsSample;
public static class Program
{
public static async Task Main()
{
// Load configuration from environment variables or user secrets.
Settings settings = new();
OpenAIClientProvider clientProvider =
OpenAIClientProvider.ForAzureOpenAI(new AzureCliCredential(), new Uri(settings.AzureOpenAI.Endpoint));
Console.WriteLine("Uploading files...");
OpenAIFileClient fileClient = clientProvider.Client.GetOpenAIFileClient();
OpenAIFile fileDataCountryDetail = await fileClient.UploadFileAsync("PopulationByAdmin1.csv", FileUploadPurpose.Assistants);
OpenAIFile fileDataCountryList = await fileClient.UploadFileAsync("PopulationByCountry.csv", FileUploadPurpose.Assistants);
Console.WriteLine("Defining agent...");
OpenAIAssistantAgent agent =
await OpenAIAssistantAgent.CreateAsync(
clientProvider,
new OpenAIAssistantDefinition(settings.AzureOpenAI.ChatModelDeployment)
{
Name = "SampleAssistantAgent",
Instructions =
"""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
EnableCodeInterpreter = true,
CodeInterpreterFileIds = [fileDataCountryList.Id, fileDataCountryDetail.Id],
},
new Kernel());
Console.WriteLine("Creating thread...");
string threadId = await agent.CreateThreadAsync();
Console.WriteLine("Ready!");
try
{
bool isComplete = false;
List<string> fileIds = [];
do
{
Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
isComplete = true;
break;
}
await agent.AddChatMessageAsync(threadId, new ChatMessageContent(AuthorRole.User, input));
Console.WriteLine();
bool isCode = false;
await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(threadId))
{
if (isCode != (response.Metadata?.ContainsKey(OpenAIAssistantAgent.CodeInterpreterMetadataKey) ?? false))
{
Console.WriteLine();
isCode = !isCode;
}
// Display response.
Console.Write($"{response.Content}");
// Capture file IDs for downloading.
fileIds.AddRange(response.Items.OfType<StreamingFileReferenceContent>().Select(item => item.FileId));
}
Console.WriteLine();
// Download any files referenced in the response.
await DownloadResponseImageAsync(fileClient, fileIds);
fileIds.Clear();
} while (!isComplete);
}
finally
{
Console.WriteLine();
Console.WriteLine("Cleaning-up...");
await Task.WhenAll(
[
agent.DeleteThreadAsync(threadId),
agent.DeleteAsync(),
fileClient.DeleteFileAsync(fileDataCountryList.Id),
fileClient.DeleteFileAsync(fileDataCountryDetail.Id),
]);
}
}
private static async Task DownloadResponseImageAsync(OpenAIFileClient client, ICollection<string> fileIds)
{
if (fileIds.Count > 0)
{
Console.WriteLine();
foreach (string fileId in fileIds)
{
await DownloadFileContentAsync(client, fileId, launchViewer: true);
}
}
}
private static async Task DownloadFileContentAsync(OpenAIFileClient client, string fileId, bool launchViewer = false)
{
OpenAIFile fileInfo = client.GetFile(fileId);
if (fileInfo.Purpose == FilePurpose.AssistantsOutput)
{
string filePath =
Path.Combine(
Path.GetTempPath(),
Path.GetFileName(Path.ChangeExtension(fileInfo.Filename, ".png")));
BinaryData content = await client.DownloadFileAsync(fileId);
await using FileStream fileStream = new(filePath, FileMode.CreateNew);
await content.ToStream().CopyToAsync(fileStream);
Console.WriteLine($"File saved to: {filePath}.");
if (launchViewer)
{
Process.Start(
new ProcessStartInfo
{
FileName = "cmd.exe",
Arguments = $"/C start {filePath}"
});
}
}
}
}
import asyncio
import os
from semantic_kernel.agents.open_ai.azure_assistant_agent import AzureAssistantAgent
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.streaming_file_reference_content import StreamingFileReferenceContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.kernel import Kernel
# Let's form the file paths that we will later pass to the assistant
csv_file_path_1 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"PopulationByAdmin1.csv",
)
csv_file_path_2 = os.path.join(
os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
"PopulationByCountry.csv",
)
async def download_file_content(agent, file_id: str):
try:
# Fetch the content of the file using the provided method
response_content = await agent.client.files.content(file_id)
# Get the current working directory of the file
current_directory = os.path.dirname(os.path.abspath(__file__))
# Define the path to save the image in the current directory
file_path = os.path.join(
current_directory, # Use the current directory of the file
f"{file_id}.png", # You can modify this to use the actual filename with proper extension
)
# Save content to a file asynchronously
with open(file_path, "wb") as file:
file.write(response_content.content)
print(f"File saved to: {file_path}")
except Exception as e:
print(f"An error occurred while downloading file {file_id}: {str(e)}")
async def download_response_image(agent, file_ids: list[str]):
if file_ids:
# Iterate over file_ids and download each one
for file_id in file_ids:
await download_file_content(agent, file_id)
async def main():
agent = await AzureAssistantAgent.create(
kernel=Kernel(),
service_id="agent",
name="SampleAssistantAgent",
instructions="""
Analyze the available data to provide an answer to the user's question.
Always format response using markdown.
Always include a numerical index that starts at 1 for any lists or tables.
Always sort lists in ascending order.
""",
enable_code_interpreter=True,
code_interpreter_filenames=[csv_file_path_1, csv_file_path_2],
)
print("Creating thread...")
thread_id = await agent.create_thread()
try:
is_complete: bool = False
file_ids: list[str] = []
while not is_complete:
user_input = input("User:> ")
if not user_input:
continue
if user_input.lower() == "exit":
is_complete = True
break
await agent.add_chat_message(
thread_id=thread_id, message=ChatMessageContent(role=AuthorRole.USER, content=user_input)
)
is_code: bool = False
async for response in agent.invoke_stream(thread_id=thread_id):
if is_code != response.metadata.get("code"):
print()
is_code = not is_code
print(f"{response.content}", end="", flush=True)
file_ids.extend([
item.file_id for item in response.items if isinstance(item, StreamingFileReferenceContent)
])
print()
await download_response_image(agent, file_ids)
file_ids.clear()
finally:
print("Cleaning up resources...")
if agent is not None:
[await agent.delete_file(file_id) for file_id in agent.code_interpreter_file_ids]
await agent.delete_thread(thread_id)
await agent.delete()
if __name__ == "__main__":
asyncio.run(main())
代理当前在 Java 中不可用。