TensorflowCatalog.LoadTensorFlowModel 方法

定义

重载

LoadTensorFlowModel(ModelOperationsCatalog, String)

将 TensorFlow 模型加载到内存中。 这是一种方便的方法,允许加载模型一次,然后使用它来查询架构和使用TensorFlowEstimatorScoreTensorFlowModel(String, String, Boolean)。 使用此 API 需要 TensorFlow redist 上的其他 NuGet 依赖项,有关详细信息,请参阅链接文档。 TensorFlowModel 还保留对非托管资源的引用,这些资源需要通过显式调用 Dispose () 或隐式声明带有“using”语法的变量/>

LoadTensorFlowModel(ModelOperationsCatalog, String, Boolean)

将 TensorFlow 模型加载到内存中。 这是一种方便的方法,允许加载模型一次,然后使用它来查询架构和使用TensorFlowEstimatorScoreTensorFlowModel(String, String, Boolean)。 使用此 API 需要 TensorFlow redist 上的其他 NuGet 依赖项,有关详细信息,请参阅链接文档。 TensorFlowModel 还保留对非托管资源的引用,这些资源需要通过显式调用 Dispose () 或隐式声明带有“using”语法的变量/>

LoadTensorFlowModel(ModelOperationsCatalog, String)

将 TensorFlow 模型加载到内存中。 这是一种方便的方法,允许加载模型一次,然后使用它来查询架构和使用TensorFlowEstimatorScoreTensorFlowModel(String, String, Boolean)。 使用此 API 需要 TensorFlow redist 上的其他 NuGet 依赖项,有关详细信息,请参阅链接文档。 TensorFlowModel 还保留对非托管资源的引用,这些资源需要通过显式调用 Dispose () 或隐式声明带有“using”语法的变量/>

public static Microsoft.ML.Transforms.TensorFlowModel LoadTensorFlowModel (this Microsoft.ML.ModelOperationsCatalog catalog, string modelLocation);
static member LoadTensorFlowModel : Microsoft.ML.ModelOperationsCatalog * string -> Microsoft.ML.Transforms.TensorFlowModel
<Extension()>
Public Function LoadTensorFlowModel (catalog As ModelOperationsCatalog, modelLocation As String) As TensorFlowModel

参数

catalog
ModelOperationsCatalog

转换的目录。

modelLocation
String

TensorFlow 模型的位置。

返回

示例

using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class TextClassification
    {
        public const int MaxSentenceLength = 600;
        /// <summary>
        /// Example use of the TensorFlow sentiment classification model.
        /// </summary>
        public static void Example()
        {
            // Download an unfrozen (SavedModel format) pre-trained sentiment
            // model and return the path to the model directory.
            string modelLocation = Microsoft.ML.SamplesUtils.DatasetUtils
                .DownloadTensorFlowSentimentModel();

            var mlContext = new MLContext();
            var data = new[] { new IMDBSentiment() {
                Sentiment_Text = "this film was just brilliant casting location " +
                "scenery story direction everyone's really suited the part they " +
                "played and you could just imagine being there robert is an " +
                "amazing actor and now the same being director  father came from " +
                "the same scottish island as myself so i loved the fact there " +
                "was a real connection with this film the witty remarks " +
                "throughout the film were great it was just brilliant so much " +
                "that i bought the film as soon as it was released for  and " +
                "would recommend it to everyone to watch and the fly fishing was " +
                "amazing really cried at the end it was so sad and you know what " +
                "they say if you cry at a film it must have been good and this " +
                "definitely was also to the two little boy's that played the of " +
                "norman and paul they were just brilliant children are often " +
                "left out of the list i think because the stars that play them " +
                "all grown up are such a big profile for the whole film but " +
                "these children are amazing and should be praised for what " +
                "they have done don't you think the whole story was so lovely" +
                "because it was true and was someone's life after all that was" +
                "shared with us all" } };
            var dataView = mlContext.Data.LoadFromEnumerable(data);

            // This is the dictionary to convert words into the integer indexes.
            var lookupMap = mlContext.Data.LoadFromTextFile(Path.Combine(
                modelLocation, "imdb_word_index.csv"),

                columns: new[]
                   {
                        new TextLoader.Column("Words", DataKind.String, 0),
                        new TextLoader.Column("Ids", DataKind.Int32, 1),
                   },
                separatorChar: ','
               );

            // Load the TensorFlow model once.
            //      - Use it for querying the schema for input and output in the
            //            model
            //      - Use it for prediction in the pipeline.
            // Unfrozen (SavedModel format) models are loaded by providing the
            // path to the directory containing the model file and other model
            // artifacts like pre-trained weights.
            using var tensorFlowModel = mlContext.Model.LoadTensorFlowModel(
                modelLocation);
            var schema = tensorFlowModel.GetModelSchema();
            var featuresType = (VectorDataViewType)schema["Features"].Type;
            Console.WriteLine("Name: {0}, Type: {1}, Shape: (-1, {2})", "Features",
                featuresType.ItemType.RawType, featuresType.Dimensions[0]);

            var predictionType = (VectorDataViewType)schema["Prediction/Softmax"]
                .Type;
            Console.WriteLine("Name: {0}, Type: {1}, Shape: (-1, {2})",
                "Prediction/Softmax", predictionType.ItemType.RawType,
                predictionType.Dimensions[0]);

            // The model expects the input feature vector to be a fixed length
            // vector.
            // In this sample, CustomMappingEstimator is used to resize variable
            // length vector to fixed length vector.
            // The following ML.NET pipeline
            //      1. tokenizes the string into words, 
            //      2. maps each word to an integer which is an index in the
            //         dictionary ('lookupMap'),
            //      3. Resizes the integer vector to a fixed length vector using
            //         CustomMappingEstimator ('ResizeFeaturesAction')
            //      4. Passes the data to TensorFlow for scoring.
            //      5. Retreives the 'Prediction' from TensorFlow and put it into
            //         ML.NET Pipeline 

            Action<IMDBSentiment, IntermediateFeatures> ResizeFeaturesAction =
                (i, j) =>
            {
                j.Sentiment_Text = i.Sentiment_Text;
                var features = i.VariableLengthFeatures;
                Array.Resize(ref features, MaxSentenceLength);
                j.Features = features;
            };

            var model =
                mlContext.Transforms.Text.TokenizeIntoWords(
                "TokenizedWords",
                "Sentiment_Text")
                .Append(mlContext.Transforms.Conversion.MapValue(
                    "VariableLengthFeatures",
                    lookupMap,
                    lookupMap.Schema["Words"],
                    lookupMap.Schema["Ids"],
                    "TokenizedWords"))
                .Append(mlContext.Transforms.CustomMapping(
                    ResizeFeaturesAction,
                    "Resize"))
                .Append(tensorFlowModel.ScoreTensorFlowModel(
                    "Prediction/Softmax",
                    "Features"))
                .Append(mlContext.Transforms.CopyColumns(
                    "Prediction",
                    "Prediction/Softmax"))
                .Fit(dataView);
            var engine = mlContext.Model.CreatePredictionEngine<IMDBSentiment,
                OutputScores>(model);

            // Predict with TensorFlow pipeline.
            var prediction = engine.Predict(data[0]);

            Console.WriteLine("Number of classes: {0}", prediction.Prediction
                .Length);
            Console.WriteLine("Is sentiment/review positive? {0}", prediction
                .Prediction[1] > 0.5 ? "Yes." : "No.");
            Console.WriteLine("Prediction Confidence: {0}", prediction.Prediction[1]
                .ToString("0.00"));

            ///////////////////////////// Expected output //////////////////////////
            // 
            // Name: Features, Type: System.Int32, Shape: (-1, 600)
            // Name: Prediction/Softmax, Type: System.Single, Shape: (-1, 2)
            // 
            // Number of classes: 2
            // Is sentiment/review positive ? Yes
            // Prediction Confidence: 0.65
        }


        /// <summary>
        /// Class to hold original sentiment data.
        /// </summary>
        public class IMDBSentiment
        {
            public string Sentiment_Text { get; set; }

            /// <summary>
            /// This is a variable length vector designated by VectorType attribute.
            /// Variable length vectors are produced by applying operations such as
            /// 'TokenizeWords' on strings resulting in vectors of tokens of
            /// variable lengths.
            /// </summary>
            [VectorType]
            public int[] VariableLengthFeatures { get; set; }
        }

        /// <summary>
        /// Class to hold intermediate data. Mostly used by CustomMapping Estimator
        /// </summary>
        public class IntermediateFeatures
        {
            public string Sentiment_Text { get; set; }

            [VectorType(MaxSentenceLength)]
            public int[] Features { get; set; }
        }

        /// <summary>
        /// Class to contain the output values from the transformation.
        /// </summary>
        class OutputScores
        {
            [VectorType(2)]
            public float[] Prediction { get; set; }
        }

    }
}

适用于

LoadTensorFlowModel(ModelOperationsCatalog, String, Boolean)

将 TensorFlow 模型加载到内存中。 这是一种方便的方法,允许加载模型一次,然后使用它来查询架构和使用TensorFlowEstimatorScoreTensorFlowModel(String, String, Boolean)。 使用此 API 需要 TensorFlow redist 上的其他 NuGet 依赖项,有关详细信息,请参阅链接文档。 TensorFlowModel 还保留对非托管资源的引用,这些资源需要通过显式调用 Dispose () 或隐式声明带有“using”语法的变量/>

public static Microsoft.ML.Transforms.TensorFlowModel LoadTensorFlowModel (this Microsoft.ML.ModelOperationsCatalog catalog, string modelLocation, bool treatOutputAsBatched);
static member LoadTensorFlowModel : Microsoft.ML.ModelOperationsCatalog * string * bool -> Microsoft.ML.Transforms.TensorFlowModel
<Extension()>
Public Function LoadTensorFlowModel (catalog As ModelOperationsCatalog, modelLocation As String, treatOutputAsBatched As Boolean) As TensorFlowModel

参数

catalog
ModelOperationsCatalog

转换的目录。

modelLocation
String

TensorFlow 模型的位置。

treatOutputAsBatched
Boolean

如果输出的第一个维度未知,则应将其视为批处理或不批处理。

返回

示例

using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class TextClassification
    {
        public const int MaxSentenceLength = 600;
        /// <summary>
        /// Example use of the TensorFlow sentiment classification model.
        /// </summary>
        public static void Example()
        {
            // Download an unfrozen (SavedModel format) pre-trained sentiment
            // model and return the path to the model directory.
            string modelLocation = Microsoft.ML.SamplesUtils.DatasetUtils
                .DownloadTensorFlowSentimentModel();

            var mlContext = new MLContext();
            var data = new[] { new IMDBSentiment() {
                Sentiment_Text = "this film was just brilliant casting location " +
                "scenery story direction everyone's really suited the part they " +
                "played and you could just imagine being there robert is an " +
                "amazing actor and now the same being director  father came from " +
                "the same scottish island as myself so i loved the fact there " +
                "was a real connection with this film the witty remarks " +
                "throughout the film were great it was just brilliant so much " +
                "that i bought the film as soon as it was released for  and " +
                "would recommend it to everyone to watch and the fly fishing was " +
                "amazing really cried at the end it was so sad and you know what " +
                "they say if you cry at a film it must have been good and this " +
                "definitely was also to the two little boy's that played the of " +
                "norman and paul they were just brilliant children are often " +
                "left out of the list i think because the stars that play them " +
                "all grown up are such a big profile for the whole film but " +
                "these children are amazing and should be praised for what " +
                "they have done don't you think the whole story was so lovely" +
                "because it was true and was someone's life after all that was" +
                "shared with us all" } };
            var dataView = mlContext.Data.LoadFromEnumerable(data);

            // This is the dictionary to convert words into the integer indexes.
            var lookupMap = mlContext.Data.LoadFromTextFile(Path.Combine(
                modelLocation, "imdb_word_index.csv"),

                columns: new[]
                   {
                        new TextLoader.Column("Words", DataKind.String, 0),
                        new TextLoader.Column("Ids", DataKind.Int32, 1),
                   },
                separatorChar: ','
               );

            // Load the TensorFlow model once.
            //      - Use it for querying the schema for input and output in the
            //            model
            //      - Use it for prediction in the pipeline.
            // Unfrozen (SavedModel format) models are loaded by providing the
            // path to the directory containing the model file and other model
            // artifacts like pre-trained weights.
            using var tensorFlowModel = mlContext.Model.LoadTensorFlowModel(
                modelLocation);
            var schema = tensorFlowModel.GetModelSchema();
            var featuresType = (VectorDataViewType)schema["Features"].Type;
            Console.WriteLine("Name: {0}, Type: {1}, Shape: (-1, {2})", "Features",
                featuresType.ItemType.RawType, featuresType.Dimensions[0]);

            var predictionType = (VectorDataViewType)schema["Prediction/Softmax"]
                .Type;
            Console.WriteLine("Name: {0}, Type: {1}, Shape: (-1, {2})",
                "Prediction/Softmax", predictionType.ItemType.RawType,
                predictionType.Dimensions[0]);

            // The model expects the input feature vector to be a fixed length
            // vector.
            // In this sample, CustomMappingEstimator is used to resize variable
            // length vector to fixed length vector.
            // The following ML.NET pipeline
            //      1. tokenizes the string into words, 
            //      2. maps each word to an integer which is an index in the
            //         dictionary ('lookupMap'),
            //      3. Resizes the integer vector to a fixed length vector using
            //         CustomMappingEstimator ('ResizeFeaturesAction')
            //      4. Passes the data to TensorFlow for scoring.
            //      5. Retreives the 'Prediction' from TensorFlow and put it into
            //         ML.NET Pipeline 

            Action<IMDBSentiment, IntermediateFeatures> ResizeFeaturesAction =
                (i, j) =>
            {
                j.Sentiment_Text = i.Sentiment_Text;
                var features = i.VariableLengthFeatures;
                Array.Resize(ref features, MaxSentenceLength);
                j.Features = features;
            };

            var model =
                mlContext.Transforms.Text.TokenizeIntoWords(
                "TokenizedWords",
                "Sentiment_Text")
                .Append(mlContext.Transforms.Conversion.MapValue(
                    "VariableLengthFeatures",
                    lookupMap,
                    lookupMap.Schema["Words"],
                    lookupMap.Schema["Ids"],
                    "TokenizedWords"))
                .Append(mlContext.Transforms.CustomMapping(
                    ResizeFeaturesAction,
                    "Resize"))
                .Append(tensorFlowModel.ScoreTensorFlowModel(
                    "Prediction/Softmax",
                    "Features"))
                .Append(mlContext.Transforms.CopyColumns(
                    "Prediction",
                    "Prediction/Softmax"))
                .Fit(dataView);
            var engine = mlContext.Model.CreatePredictionEngine<IMDBSentiment,
                OutputScores>(model);

            // Predict with TensorFlow pipeline.
            var prediction = engine.Predict(data[0]);

            Console.WriteLine("Number of classes: {0}", prediction.Prediction
                .Length);
            Console.WriteLine("Is sentiment/review positive? {0}", prediction
                .Prediction[1] > 0.5 ? "Yes." : "No.");
            Console.WriteLine("Prediction Confidence: {0}", prediction.Prediction[1]
                .ToString("0.00"));

            ///////////////////////////// Expected output //////////////////////////
            // 
            // Name: Features, Type: System.Int32, Shape: (-1, 600)
            // Name: Prediction/Softmax, Type: System.Single, Shape: (-1, 2)
            // 
            // Number of classes: 2
            // Is sentiment/review positive ? Yes
            // Prediction Confidence: 0.65
        }


        /// <summary>
        /// Class to hold original sentiment data.
        /// </summary>
        public class IMDBSentiment
        {
            public string Sentiment_Text { get; set; }

            /// <summary>
            /// This is a variable length vector designated by VectorType attribute.
            /// Variable length vectors are produced by applying operations such as
            /// 'TokenizeWords' on strings resulting in vectors of tokens of
            /// variable lengths.
            /// </summary>
            [VectorType]
            public int[] VariableLengthFeatures { get; set; }
        }

        /// <summary>
        /// Class to hold intermediate data. Mostly used by CustomMapping Estimator
        /// </summary>
        public class IntermediateFeatures
        {
            public string Sentiment_Text { get; set; }

            [VectorType(MaxSentenceLength)]
            public int[] Features { get; set; }
        }

        /// <summary>
        /// Class to contain the output values from the transformation.
        /// </summary>
        class OutputScores
        {
            [VectorType(2)]
            public float[] Prediction { get; set; }
        }

    }
}

适用于