ExtensionsCatalog.IndicateMissingValues 方法

定义

重载

IndicateMissingValues(TransformsCatalog, InputOutputColumnPair[])

创建一个MissingValueIndicatorEstimator,用于将数据从指定InputColumnName列复制到新列: OutputColumnName

IndicateMissingValues(TransformsCatalog, String, String)

创建一个 MissingValueIndicatorEstimator,它扫描指定列 inputColumnName 中的数据,并使用布尔值的向量填充指定的 outputColumnName 新列,其中 i-th bool 具有值 true (如果列数据中的 i-th 元素缺少值, false 否则)。

IndicateMissingValues(TransformsCatalog, InputOutputColumnPair[])

创建一个MissingValueIndicatorEstimator,用于将数据从指定InputColumnName列复制到新列: OutputColumnName

public static Microsoft.ML.Transforms.MissingValueIndicatorEstimator IndicateMissingValues (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns);
static member IndicateMissingValues : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] -> Microsoft.ML.Transforms.MissingValueIndicatorEstimator
<Extension()>
Public Function IndicateMissingValues (catalog As TransformsCatalog, columns As InputOutputColumnPair()) As MissingValueIndicatorEstimator

参数

catalog
TransformsCatalog

转换的目录。

columns
InputOutputColumnPair[]

输入和输出列对。 此估算器对标量或向量或Double向量Single的数据进行操作。

返回

示例

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class IndicateMissingValuesMultiColumn
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features1 = new float[3] {1, 1, 0}, Features2 =
                    new float[2] {1, 1} },

                new DataPoint(){ Features1 = new float[3] {0, float.NaN, 1},
                    Features2 = new float[2] {float.NaN, 1} },

                new DataPoint(){ Features1 = new float[3] {-1, float.NaN, -3},
                    Features2 = new float[2] {1, float.PositiveInfinity} },
            };
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // IndicateMissingValues is used to create a boolean containing 'true'
            // where the value in the input column is missing. For floats and
            // doubles, missing values are NaN. We can use an array of
            // InputOutputColumnPair to apply the MissingValueIndicatorEstimator
            // to multiple columns in one pass over the data.
            var pipeline = mlContext.Transforms.IndicateMissingValues(new[] {
                new InputOutputColumnPair("MissingIndicator1", "Features1"),
                new InputOutputColumnPair("MissingIndicator2", "Features2")
            });

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var tansformer = pipeline.Fit(data);
            var transformedData = tansformer.Transform(data);

            // We can extract the newly created column as an IEnumerable of
            // SampleDataTransformed, the class we define below.
            var rowEnumerable = mlContext.Data.CreateEnumerable<
                SampleDataTransformed>(transformedData, reuseRowObject: false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            foreach (var row in rowEnumerable)
                Console.WriteLine("Features1: [" + string.Join(", ", row
                    .Features1) + "]\t MissingIndicator1: [" + string.Join(", ",
                    row.MissingIndicator1) + "]\t Features2: [" + string.Join(", ",
                    row.Features2) + "]\t MissingIndicator2: [" + string.Join(", ",
                    row.MissingIndicator2) + "]");

            // Expected output:
            // Features1: [1, 1, 0]     MissingIndicator1: [False, False, False]        Features2: [1, 1]       MissingIndicator2: [False, False]
            // Features1: [0, NaN, 1]   MissingIndicator1: [False, True, False]         Features2: [NaN, 1]     MissingIndicator2: [True, False]
            // Features1: [-1, NaN, -3]         MissingIndicator1: [False, True, False]         Features2: [1, ∞]       MissingIndicator2: [False, False]
        }

        private class DataPoint
        {
            [VectorType(3)]
            public float[] Features1 { get; set; }
            [VectorType(2)]
            public float[] Features2 { get; set; }
        }

        private sealed class SampleDataTransformed : DataPoint
        {
            public bool[] MissingIndicator1 { get; set; }
            public bool[] MissingIndicator2 { get; set; }

        }
    }
}

注解

此转换可以对多个列进行操作。

适用于

IndicateMissingValues(TransformsCatalog, String, String)

创建一个 MissingValueIndicatorEstimator,它扫描指定列 inputColumnName 中的数据,并使用布尔值的向量填充指定的 outputColumnName 新列,其中 i-th bool 具有值 true (如果列数据中的 i-th 元素缺少值, false 否则)。

public static Microsoft.ML.Transforms.MissingValueIndicatorEstimator IndicateMissingValues (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default);
static member IndicateMissingValues : Microsoft.ML.TransformsCatalog * string * string -> Microsoft.ML.Transforms.MissingValueIndicatorEstimator
<Extension()>
Public Function IndicateMissingValues (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing) As MissingValueIndicatorEstimator

参数

catalog
TransformsCatalog

转换的目录。

outputColumnName
String

由转换 inputColumnName生成的列的名称。 此列的数据类型将是一 Boolean个向量。

inputColumnName
String

要从中复制数据的列的名称。 此估算器通过标量或向量或Double矢量Single运行。

返回

示例

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class IndicateMissingValues
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[3] {1, 1, 0} },
                new DataPoint(){ Features = new float[3] {0, float.NaN, 1} },
                new DataPoint(){ Features = new float[3] {-1, float.NaN, -3} },
            };
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // IndicateMissingValues is used to create a boolean containing 'true'
            // where the value in the input column is missing. For floats and
            // doubles, missing values are represented as NaN.
            var pipeline = mlContext.Transforms.IndicateMissingValues(
                "MissingIndicator", "Features");

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var tansformer = pipeline.Fit(data);
            var transformedData = tansformer.Transform(data);

            // We can extract the newly created column as an IEnumerable of
            // SampleDataTransformed, the class we define below.
            var rowEnumerable = mlContext.Data.CreateEnumerable<
                SampleDataTransformed>(transformedData, reuseRowObject: false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            foreach (var row in rowEnumerable)
                Console.WriteLine("Features: [" + string.Join(", ", row.Features) +
                    "]\t MissingIndicator: [" + string.Join(", ", row
                    .MissingIndicator) + "]");

            // Expected output:
            // Features: [1, 1, 0]      MissingIndicator: [False, False, False]
            // Features: [0, NaN, 1]    MissingIndicator: [False, True, False]
            // Features: [-1, NaN, -3]  MissingIndicator: [False, True, False]
        }

        private class DataPoint
        {
            [VectorType(3)]
            public float[] Features { get; set; }
        }

        private sealed class SampleDataTransformed : DataPoint
        {
            public bool[] MissingIndicator { get; set; }
        }
    }
}

适用于