Dela via


Anvisningar: Öppna KODtolkare för AI-assistenten (experimentell)

Varning

Semantic Kernel Agent Framework är experimentellt, fortfarande under utveckling och kan komma att ändras.

Översikt

I det här exemplet utforskar vi hur du använder kodtolkarverktyget för en Open AI Assistant-agent för att slutföra dataanalysuppgifter. Metoden kommer att delas upp steg för steg för att belysa de viktigaste delarna i kodningsprocessen. Som en del av uppgiften genererar agenten både bild- och textsvar. Detta visar hur mångsidigt det här verktyget är när det gäller att utföra kvantitativ analys.

Direktuppspelning används för att leverera agentens svar. Detta ger realtidsuppdateringar under aktivitetens gång.

Komma igång

Innan du fortsätter med funktionskodning kontrollerar du att utvecklingsmiljön är helt konfigurerad och konfigurerad.

Börja med att skapa ett konsolprojekt . Inkludera sedan följande paketreferenser för att säkerställa att alla nödvändiga beroenden är tillgängliga.

Om du vill lägga till paketberoenden från kommandoraden dotnet använder du kommandot:

dotnet add package Azure.Identity
dotnet add package Microsoft.Extensions.Configuration
dotnet add package Microsoft.Extensions.Configuration.Binder
dotnet add package Microsoft.Extensions.Configuration.UserSecrets
dotnet add package Microsoft.Extensions.Configuration.EnvironmentVariables
dotnet add package Microsoft.SemanticKernel
dotnet add package Microsoft.SemanticKernel.Agents.OpenAI --prerelease

Om du hanterar NuGet-paket i Visual Studio kontrollerar du att Include prerelease det är markerat.

Projektfilen (.csproj) bör innehålla följande PackageReference definitioner:

  <ItemGroup>
    <PackageReference Include="Azure.Identity" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.UserSecrets" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.EnvironmentVariables" Version="<stable>" />
    <PackageReference Include="Microsoft.SemanticKernel" Version="<latest>" />
    <PackageReference Include="Microsoft.SemanticKernel.Agents.OpenAI" Version="<latest>" />
  </ItemGroup>

Agent Framework är experimentellt och kräver varningsundertryckning. Detta kan adresseras som en egenskap i projektfilen (.csproj):

  <PropertyGroup>
    <NoWarn>$(NoWarn);CA2007;IDE1006;SKEXP0001;SKEXP0110;OPENAI001</NoWarn>
  </PropertyGroup>

Kopiera dessutom datafilerna PopulationByAdmin1.csv och PopulationByCountry.csv från Semantic KernelLearnResources Project. Lägg till dessa filer i projektmappen och konfigurera så att de kopieras till utdatakatalogen:

  <ItemGroup>
    <None Include="PopulationByAdmin1.csv">
      <CopyToOutputDirectory>Always</CopyToOutputDirectory>
    </None>
    <None Include="PopulationByCountry.csv">
      <CopyToOutputDirectory>Always</CopyToOutputDirectory>
    </None>
  </ItemGroup>

Börja med att skapa en mapp som innehåller skriptet (.py filen) och exempelresurserna. Ta med följande importer överst .py i filen:

import asyncio
import os

from semantic_kernel.agents.open_ai.azure_assistant_agent import AzureAssistantAgent
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.streaming_file_reference_content import StreamingFileReferenceContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.kernel import Kernel

Kopiera dessutom datafilerna PopulationByAdmin1.csv och PopulationByCountry.csv från Semantic KernelLearnResources Project. Lägg till de här filerna i projektmappen.

Agenter är för närvarande inte tillgängliga i Java.

Konfiguration

Det här exemplet kräver konfigurationsinställning för att ansluta till fjärrtjänster. Du måste definiera inställningar för antingen Open AI eller Azure Open AI.

# Open AI
dotnet user-secrets set "OpenAISettings:ApiKey" "<api-key>"
dotnet user-secrets set "OpenAISettings:ChatModel" "gpt-4o"

# Azure Open AI
dotnet user-secrets set "AzureOpenAISettings:ApiKey" "<api-key>" # Not required if using token-credential
dotnet user-secrets set "AzureOpenAISettings:Endpoint" "<model-endpoint>"
dotnet user-secrets set "AzureOpenAISettings:ChatModelDeployment" "gpt-4o"

Följande klass används i alla agentexempel. Se till att inkludera den i projektet för att säkerställa rätt funktioner. Den här klassen fungerar som en grundläggande komponent för de exempel som följer.

using System.Reflection;
using Microsoft.Extensions.Configuration;

namespace AgentsSample;

public class Settings
{
    private readonly IConfigurationRoot configRoot;

    private AzureOpenAISettings azureOpenAI;
    private OpenAISettings openAI;

    public AzureOpenAISettings AzureOpenAI => this.azureOpenAI ??= this.GetSettings<Settings.AzureOpenAISettings>();
    public OpenAISettings OpenAI => this.openAI ??= this.GetSettings<Settings.OpenAISettings>();

    public class OpenAISettings
    {
        public string ChatModel { get; set; } = string.Empty;
        public string ApiKey { get; set; } = string.Empty;
    }

    public class AzureOpenAISettings
    {
        public string ChatModelDeployment { get; set; } = string.Empty;
        public string Endpoint { get; set; } = string.Empty;
        public string ApiKey { get; set; } = string.Empty;
    }

    public TSettings GetSettings<TSettings>() =>
        this.configRoot.GetRequiredSection(typeof(TSettings).Name).Get<TSettings>()!;

    public Settings()
    {
        this.configRoot =
            new ConfigurationBuilder()
                .AddEnvironmentVariables()
                .AddUserSecrets(Assembly.GetExecutingAssembly(), optional: true)
                .Build();
    }
}

Det snabbaste sättet att komma igång med rätt konfiguration för att köra exempelkoden är att skapa en .env fil i roten av projektet (där skriptet körs).

Konfigurera följande inställningar i .env filen för Antingen Azure OpenAI eller OpenAI:

AZURE_OPENAI_API_KEY="..."
AZURE_OPENAI_ENDPOINT="https://..."
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_API_VERSION="..."

OPENAI_API_KEY="sk-..."
OPENAI_ORG_ID=""
OPENAI_CHAT_MODEL_ID=""

När de har konfigurerats hämtar respektive AI-tjänstklasser de variabler som krävs och använder dem under instansieringen.

Agenter är för närvarande inte tillgängliga i Java.

Kodning

Kodningsprocessen för det här exemplet omfattar:

  1. Installation – Initiera inställningar och plugin-programmet.
  2. Agentdefinition – Skapa OpenAI_Assistant_Agent med templaterade instruktioner och plugin-program.
  3. Chattslingan – Skriv loopen som driver interaktion mellan användare och agent.

Den fullständiga exempelkoden finns i avsnittet Slutlig . Se det avsnittet för den fullständiga implementeringen.

Ställ in

Innan du skapar en Open AI Assistant-agent kontrollerar du att konfigurationsinställningarna är tillgängliga och förbereder filresurserna.

Instansiera klassen Settings som refereras i föregående konfigurationsavsnitt . Använd inställningarna för att också skapa en OpenAIClientProvider som ska användas för agentdefinitionen samt filuppladdning.

Settings settings = new();

OpenAIClientProvider clientProvider =
    OpenAIClientProvider.ForAzureOpenAI(new AzureCliCredential(), new Uri(settings.AzureOpenAI.Endpoint));

Agenter är för närvarande inte tillgängliga i Java.

OpenAIClientProvider Använd för att komma åt och OpenAIFileClient ladda upp de två datafiler som beskrivs i föregående konfigurationsavsnitt, vilket bevarar filreferensen för slutlig rensning.

Console.WriteLine("Uploading files...");
OpenAIFileClient fileClient = clientProvider.Client.GetOpenAIFileClient();
OpenAIFile fileDataCountryDetail = await fileClient.UploadFileAsync("PopulationByAdmin1.csv", FileUploadPurpose.Assistants);
OpenAIFile fileDataCountryList = await fileClient.UploadFileAsync("PopulationByCountry.csv", FileUploadPurpose.Assistants);
# Let's form the file paths that we will later pass to the assistant
csv_file_path_1 = os.path.join(
    os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
    "PopulationByAdmin1.csv",
)

csv_file_path_2 = os.path.join(
    os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
    "PopulationByCountry.csv",
)

Agenter är för närvarande inte tillgängliga i Java.

Agentdefinition

Nu är vi redo att instansiera en OpenAI Assistant-agent. Agenten är konfigurerad med målmodellen, instruktionerna och kodtolkningsverktyget aktiverade. Dessutom associerar vi uttryckligen de två datafilerna med kodtolkarverktyget .

Console.WriteLine("Defining agent...");
OpenAIAssistantAgent agent =
    await OpenAIAssistantAgent.CreateAsync(
        clientProvider,
        new OpenAIAssistantDefinition(settings.AzureOpenAI.ChatModelDeployment)
        {
            Name = "SampleAssistantAgent",
            Instructions =
                """
                Analyze the available data to provide an answer to the user's question.
                Always format response using markdown.
                Always include a numerical index that starts at 1 for any lists or tables.
                Always sort lists in ascending order.
                """,
            EnableCodeInterpreter = true,
            CodeInterpreterFileIds = [fileDataCountryList.Id, fileDataCountryDetail.Id],
        },
        new Kernel());
agent = await AzureAssistantAgent.create(
        kernel=Kernel(),
        service_id="agent",
        name="SampleAssistantAgent",
        instructions="""
                Analyze the available data to provide an answer to the user's question.
                Always format response using markdown.
                Always include a numerical index that starts at 1 for any lists or tables.
                Always sort lists in ascending order.
                """,
        enable_code_interpreter=True,
        code_interpreter_filenames=[csv_file_path_1, csv_file_path_2],
    )

Agenter är för närvarande inte tillgängliga i Java.

Chattloopen

Äntligen kan vi samordna interaktionen mellan användaren och agenten. Börja med att skapa en assistenttråd för att behålla konversationstillståndet och skapa en tom loop.

Nu ska vi också se till att resurserna tas bort i slutet av körningen för att minimera onödiga avgifter.

Console.WriteLine("Creating thread...");
string threadId = await agent.CreateThreadAsync();

Console.WriteLine("Ready!");

try
{
    bool isComplete = false;
    List<string> fileIds = [];
    do
    {

    } while (!isComplete);
}
finally
{
    Console.WriteLine();
    Console.WriteLine("Cleaning-up...");
    await Task.WhenAll(
        [
            agent.DeleteThreadAsync(threadId),
            agent.DeleteAsync(),
            fileClient.DeleteFileAsync(fileDataCountryList.Id),
            fileClient.DeleteFileAsync(fileDataCountryDetail.Id),
        ]);
}
print("Creating thread...")
thread_id = await agent.create_thread()

try:
    is_complete: bool = False
    file_ids: list[str] = []
    while not is_complete:
        # agent interaction logic here
finally:
    print("Cleaning up resources...")
    if agent is not None:
        [await agent.delete_file(file_id) for file_id in agent.code_interpreter_file_ids]
        await agent.delete_thread(thread_id)
        await agent.delete()

Agenter är för närvarande inte tillgängliga i Java.

Nu ska vi samla in användarindata i föregående loop. I det här fallet ignoreras tomma indata och termen EXIT signalerar att konversationen har slutförts. Giltiga indata läggs till i assistenttråden som ett användarmeddelande.

Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
    continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
    isComplete = true;
    break;
}

await agent.AddChatMessageAsync(threadId, new ChatMessageContent(AuthorRole.User, input));

Console.WriteLine();
user_input = input("User:> ")
if not user_input:
    continue

if user_input.lower() == "exit":
    is_complete = True
    break

await agent.add_chat_message(thread_id=thread_id, message=ChatMessageContent(role=AuthorRole.USER, content=user_input))

Agenter är för närvarande inte tillgängliga i Java.

Innan vi anropar agentsvaret ska vi lägga till några hjälpmetoder för att ladda ned filer som kan skapas av agenten.

Här placerar vi filinnehåll i den systemdefinierade temporära katalogen och startar sedan det systemdefinierade visningsprogrammet.

private static async Task DownloadResponseImageAsync(OpenAIFileClient client, ICollection<string> fileIds)
{
    if (fileIds.Count > 0)
    {
        Console.WriteLine();
        foreach (string fileId in fileIds)
        {
            await DownloadFileContentAsync(client, fileId, launchViewer: true);
        }
    }
}

private static async Task DownloadFileContentAsync(OpenAIFileClient client, string fileId, bool launchViewer = false)
{
    OpenAIFile fileInfo = client.GetFile(fileId);
    if (fileInfo.Purpose == FilePurpose.AssistantsOutput)
    {
        string filePath =
            Path.Combine(
                Path.GetTempPath(),
                Path.GetFileName(Path.ChangeExtension(fileInfo.Filename, ".png")));

        BinaryData content = await client.DownloadFileAsync(fileId);
        await using FileStream fileStream = new(filePath, FileMode.CreateNew);
        await content.ToStream().CopyToAsync(fileStream);
        Console.WriteLine($"File saved to: {filePath}.");

        if (launchViewer)
        {
            Process.Start(
                new ProcessStartInfo
                {
                    FileName = "cmd.exe",
                    Arguments = $"/C start {filePath}"
                });
        }
    }
}
import os

async def download_file_content(agent, file_id: str):
    try:
        # Fetch the content of the file using the provided method
        response_content = await agent.client.files.content(file_id)

        # Get the current working directory of the file
        current_directory = os.path.dirname(os.path.abspath(__file__))

        # Define the path to save the image in the current directory
        file_path = os.path.join(
            current_directory,  # Use the current directory of the file
            f"{file_id}.png"  # You can modify this to use the actual filename with proper extension
        )

        # Save content to a file asynchronously
        with open(file_path, "wb") as file:
            file.write(response_content.content)

        print(f"File saved to: {file_path}")
    except Exception as e:
        print(f"An error occurred while downloading file {file_id}: {str(e)}")

async def download_response_image(agent, file_ids: list[str]):
    if file_ids:
        # Iterate over file_ids and download each one
        for file_id in file_ids:
            await download_file_content(agent, file_id)

Agenter är för närvarande inte tillgängliga i Java.

Om du vill generera ett agentsvar på användarindata anropar du agenten genom att ange assistenttråden. I det här exemplet väljer vi ett strömmat svar och samlar in eventuella genererade filreferenser för nedladdning och granskning i slutet av svarscykeln. Det är viktigt att observera att genererad kod identifieras genom förekomsten av en metadatanyckel i svarsmeddelandet, vilket skiljer den från konversationssvaret.

bool isCode = false;
await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(threadId))
{
    if (isCode != (response.Metadata?.ContainsKey(OpenAIAssistantAgent.CodeInterpreterMetadataKey) ?? false))
    {
        Console.WriteLine();
        isCode = !isCode;
    }

    // Display response.
    Console.Write($"{response.Content}");

    // Capture file IDs for downloading.
    fileIds.AddRange(response.Items.OfType<StreamingFileReferenceContent>().Select(item => item.FileId));
}
Console.WriteLine();

// Download any files referenced in the response.
await DownloadResponseImageAsync(fileClient, fileIds);
fileIds.Clear();
is_code: bool = False
async for response in agent.invoke(stream(thread_id=thread_id):
    if is_code != metadata.get("code"):
        print()
        is_code = not is_code

    print(f"{response.content})

    file_ids.extend(
        [item.file_id for item in response.items if isinstance(item, StreamingFileReferenceContent)]
    )

print()

await download_response_image(agent, file_ids)
file_ids.clear()

Agenter är för närvarande inte tillgängliga i Java.

Slutgiltig

För att samla alla steg har vi den slutliga koden för det här exemplet. Den fullständiga implementeringen tillhandahålls nedan.

Prova att använda följande föreslagna indata:

  1. Jämför filerna för att fastställa antalet länder som inte har en definierad stat eller provins jämfört med det totala antalet
  2. Skapa en tabell för länder med en definierad delstat eller provins. Inkludera antalet delstater eller provinser och den totala populationen
  3. Ange ett stapeldiagram för länder vars namn börjar med samma bokstav och sortera x-axeln efter högsta antal till lägsta (inkludera alla länder)
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Azure.Identity;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents.OpenAI;
using Microsoft.SemanticKernel.ChatCompletion;
using OpenAI.Files;

namespace AgentsSample;

public static class Program
{
    public static async Task Main()
    {
        // Load configuration from environment variables or user secrets.
        Settings settings = new();

        OpenAIClientProvider clientProvider =
            OpenAIClientProvider.ForAzureOpenAI(new AzureCliCredential(), new Uri(settings.AzureOpenAI.Endpoint));

        Console.WriteLine("Uploading files...");
        OpenAIFileClient fileClient = clientProvider.Client.GetOpenAIFileClient();
        OpenAIFile fileDataCountryDetail = await fileClient.UploadFileAsync("PopulationByAdmin1.csv", FileUploadPurpose.Assistants);
        OpenAIFile fileDataCountryList = await fileClient.UploadFileAsync("PopulationByCountry.csv", FileUploadPurpose.Assistants);

        Console.WriteLine("Defining agent...");
        OpenAIAssistantAgent agent =
            await OpenAIAssistantAgent.CreateAsync(
                clientProvider,
                new OpenAIAssistantDefinition(settings.AzureOpenAI.ChatModelDeployment)
                {
                    Name = "SampleAssistantAgent",
                    Instructions =
                        """
                        Analyze the available data to provide an answer to the user's question.
                        Always format response using markdown.
                        Always include a numerical index that starts at 1 for any lists or tables.
                        Always sort lists in ascending order.
                        """,
                    EnableCodeInterpreter = true,
                    CodeInterpreterFileIds = [fileDataCountryList.Id, fileDataCountryDetail.Id],
                },
                new Kernel());

        Console.WriteLine("Creating thread...");
        string threadId = await agent.CreateThreadAsync();

        Console.WriteLine("Ready!");

        try
        {
            bool isComplete = false;
            List<string> fileIds = [];
            do
            {
                Console.WriteLine();
                Console.Write("> ");
                string input = Console.ReadLine();
                if (string.IsNullOrWhiteSpace(input))
                {
                    continue;
                }
                if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
                {
                    isComplete = true;
                    break;
                }

                await agent.AddChatMessageAsync(threadId, new ChatMessageContent(AuthorRole.User, input));

                Console.WriteLine();

                bool isCode = false;
                await foreach (StreamingChatMessageContent response in agent.InvokeStreamingAsync(threadId))
                {
                    if (isCode != (response.Metadata?.ContainsKey(OpenAIAssistantAgent.CodeInterpreterMetadataKey) ?? false))
                    {
                        Console.WriteLine();
                        isCode = !isCode;
                    }

                    // Display response.
                    Console.Write($"{response.Content}");

                    // Capture file IDs for downloading.
                    fileIds.AddRange(response.Items.OfType<StreamingFileReferenceContent>().Select(item => item.FileId));
                }
                Console.WriteLine();

                // Download any files referenced in the response.
                await DownloadResponseImageAsync(fileClient, fileIds);
                fileIds.Clear();

            } while (!isComplete);
        }
        finally
        {
            Console.WriteLine();
            Console.WriteLine("Cleaning-up...");
            await Task.WhenAll(
                [
                    agent.DeleteThreadAsync(threadId),
                    agent.DeleteAsync(),
                    fileClient.DeleteFileAsync(fileDataCountryList.Id),
                    fileClient.DeleteFileAsync(fileDataCountryDetail.Id),
                ]);
        }
    }

    private static async Task DownloadResponseImageAsync(OpenAIFileClient client, ICollection<string> fileIds)
    {
        if (fileIds.Count > 0)
        {
            Console.WriteLine();
            foreach (string fileId in fileIds)
            {
                await DownloadFileContentAsync(client, fileId, launchViewer: true);
            }
        }
    }

    private static async Task DownloadFileContentAsync(OpenAIFileClient client, string fileId, bool launchViewer = false)
    {
        OpenAIFile fileInfo = client.GetFile(fileId);
        if (fileInfo.Purpose == FilePurpose.AssistantsOutput)
        {
            string filePath =
                Path.Combine(
                    Path.GetTempPath(),
                    Path.GetFileName(Path.ChangeExtension(fileInfo.Filename, ".png")));

            BinaryData content = await client.DownloadFileAsync(fileId);
            await using FileStream fileStream = new(filePath, FileMode.CreateNew);
            await content.ToStream().CopyToAsync(fileStream);
            Console.WriteLine($"File saved to: {filePath}.");

            if (launchViewer)
            {
                Process.Start(
                    new ProcessStartInfo
                    {
                        FileName = "cmd.exe",
                        Arguments = $"/C start {filePath}"
                    });
            }
        }
    }
}
import asyncio
import os

from semantic_kernel.agents.open_ai.azure_assistant_agent import AzureAssistantAgent
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.streaming_file_reference_content import StreamingFileReferenceContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.kernel import Kernel

# Let's form the file paths that we will later pass to the assistant
csv_file_path_1 = os.path.join(
    os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
    "PopulationByAdmin1.csv",
)

csv_file_path_2 = os.path.join(
    os.path.dirname(os.path.dirname(os.path.realpath(__file__))),
    "PopulationByCountry.csv",
)


async def download_file_content(agent, file_id: str):
    try:
        # Fetch the content of the file using the provided method
        response_content = await agent.client.files.content(file_id)

        # Get the current working directory of the file
        current_directory = os.path.dirname(os.path.abspath(__file__))

        # Define the path to save the image in the current directory
        file_path = os.path.join(
            current_directory,  # Use the current directory of the file
            f"{file_id}.png",  # You can modify this to use the actual filename with proper extension
        )

        # Save content to a file asynchronously
        with open(file_path, "wb") as file:
            file.write(response_content.content)

        print(f"File saved to: {file_path}")
    except Exception as e:
        print(f"An error occurred while downloading file {file_id}: {str(e)}")


async def download_response_image(agent, file_ids: list[str]):
    if file_ids:
        # Iterate over file_ids and download each one
        for file_id in file_ids:
            await download_file_content(agent, file_id)


async def main():
    agent = await AzureAssistantAgent.create(
        kernel=Kernel(),
        service_id="agent",
        name="SampleAssistantAgent",
        instructions="""
                    Analyze the available data to provide an answer to the user's question.
                    Always format response using markdown.
                    Always include a numerical index that starts at 1 for any lists or tables.
                    Always sort lists in ascending order.
                    """,
        enable_code_interpreter=True,
        code_interpreter_filenames=[csv_file_path_1, csv_file_path_2],
    )

    print("Creating thread...")
    thread_id = await agent.create_thread()

    try:
        is_complete: bool = False
        file_ids: list[str] = []
        while not is_complete:
            user_input = input("User:> ")
            if not user_input:
                continue

            if user_input.lower() == "exit":
                is_complete = True
                break

            await agent.add_chat_message(
                thread_id=thread_id, message=ChatMessageContent(role=AuthorRole.USER, content=user_input)
            )
            is_code: bool = False
            async for response in agent.invoke_stream(thread_id=thread_id):
                if is_code != response.metadata.get("code"):
                    print()
                    is_code = not is_code

                print(f"{response.content}", end="", flush=True)

                file_ids.extend([
                    item.file_id for item in response.items if isinstance(item, StreamingFileReferenceContent)
                ])

            print()

            await download_response_image(agent, file_ids)
            file_ids.clear()

    finally:
        print("Cleaning up resources...")
        if agent is not None:
            [await agent.delete_file(file_id) for file_id in agent.code_interpreter_file_ids]
            await agent.delete_thread(thread_id)
            await agent.delete()


if __name__ == "__main__":
    asyncio.run(main())

Agenter är för närvarande inte tillgängliga i Java.