Dela via


Anvisningar: Öppna AI Assistant-agentens filsökning (experimentell)

Varning

Semantic Kernel Agent Framework är experimentellt, fortfarande under utveckling och kan komma att ändras.

Översikt

I det här exemplet utforskar vi hur du använder filsökningsverktyget för en Open AI Assistant-agent för att slutföra förståelseuppgifter. Metoden kommer att vara stegvis, vilket säkerställer tydlighet och precision under hela processen. Som en del av uppgiften tillhandahåller agenten dokumentciteringar i svaret.

Direktuppspelning används för att leverera agentens svar. Detta ger realtidsuppdateringar under aktivitetens gång.

Komma igång

Innan du fortsätter med funktionskodning kontrollerar du att utvecklingsmiljön är helt konfigurerad och konfigurerad.

Om du vill lägga till paketberoenden från kommandoraden dotnet använder du kommandot:

dotnet add package Azure.Identity
dotnet add package Microsoft.Extensions.Configuration
dotnet add package Microsoft.Extensions.Configuration.Binder
dotnet add package Microsoft.Extensions.Configuration.UserSecrets
dotnet add package Microsoft.Extensions.Configuration.EnvironmentVariables
dotnet add package Microsoft.SemanticKernel
dotnet add package Microsoft.SemanticKernel.Agents.OpenAI --prerelease

Om du hanterar NuGet-paket i Visual Studio kontrollerar du att Include prerelease det är markerat.

Projektfilen (.csproj) bör innehålla följande PackageReference definitioner:

  <ItemGroup>
    <PackageReference Include="Azure.Identity" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.Binder" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.UserSecrets" Version="<stable>" />
    <PackageReference Include="Microsoft.Extensions.Configuration.EnvironmentVariables" Version="<stable>" />
    <PackageReference Include="Microsoft.SemanticKernel" Version="<latest>" />
    <PackageReference Include="Microsoft.SemanticKernel.Agents.OpenAI" Version="<latest>" />
  </ItemGroup>

Agent Framework är experimentellt och kräver varningsundertryckning. Detta kan adresseras som en egenskap i projektfilen (.csproj):

  <PropertyGroup>
    <NoWarn>$(NoWarn);CA2007;IDE1006;SKEXP0001;SKEXP0110;OPENAI001</NoWarn>
  </PropertyGroup>

Kopiera dessutom innehållet för Grimms-The-King-of-the-Golden-Mountain.txt, Grimms-The-Water-of-Life.txt och Grimms-The-White-Snake.txt den offentliga domänen från Semantic KernelLearnResources Project. Lägg till dessa filer i projektmappen och konfigurera så att de kopieras till utdatakatalogen:

  <ItemGroup>
    <None Include="Grimms-The-King-of-the-Golden-Mountain.txt">
      <CopyToOutputDirectory>Always</CopyToOutputDirectory>
    </None>
    <None Include="Grimms-The-Water-of-Life.txt">
      <CopyToOutputDirectory>Always</CopyToOutputDirectory>
    </None>
    <None Include="Grimms-The-White-Snake.txt">
      <CopyToOutputDirectory>Always</CopyToOutputDirectory>
    </None>
  </ItemGroup>

Börja med att skapa en mapp som innehåller skriptet (.py filen) och exempelresurserna. Ta med följande importer överst .py i filen:

import asyncio
import os

from semantic_kernel.agents.open_ai.azure_assistant_agent import AzureAssistantAgent
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.streaming_annotation_content import StreamingAnnotationContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.kernel import Kernel

Kopiera dessutom innehållet för Grimms-The-King-of-the-Golden-Mountain.txt, Grimms-The-Water-of-Life.txt och Grimms-The-White-Snake.txt den offentliga domänen från Semantic KernelLearnResources Project. Lägg till de här filerna i projektmappen.

Agenter är för närvarande inte tillgängliga i Java.

Konfiguration

Det här exemplet kräver konfigurationsinställning för att ansluta till fjärrtjänster. Du måste definiera inställningar för antingen Open AI eller Azure Open AI.

# Open AI
dotnet user-secrets set "OpenAISettings:ApiKey" "<api-key>"
dotnet user-secrets set "OpenAISettings:ChatModel" "gpt-4o"

# Azure Open AI
dotnet user-secrets set "AzureOpenAISettings:ApiKey" "<api-key>" # Not required if using token-credential
dotnet user-secrets set "AzureOpenAISettings:Endpoint" "https://lightspeed-team-shared-openai-eastus.openai.azure.com/"
dotnet user-secrets set "AzureOpenAISettings:ChatModelDeployment" "gpt-4o"

Följande klass används i alla agentexempel. Se till att inkludera den i projektet för att säkerställa rätt funktioner. Den här klassen fungerar som en grundläggande komponent för de exempel som följer.

using System.Reflection;
using Microsoft.Extensions.Configuration;

namespace AgentsSample;

public class Settings
{
    private readonly IConfigurationRoot configRoot;

    private AzureOpenAISettings azureOpenAI;
    private OpenAISettings openAI;

    public AzureOpenAISettings AzureOpenAI => this.azureOpenAI ??= this.GetSettings<Settings.AzureOpenAISettings>();
    public OpenAISettings OpenAI => this.openAI ??= this.GetSettings<Settings.OpenAISettings>();

    public class OpenAISettings
    {
        public string ChatModel { get; set; } = string.Empty;
        public string ApiKey { get; set; } = string.Empty;
    }

    public class AzureOpenAISettings
    {
        public string ChatModelDeployment { get; set; } = string.Empty;
        public string Endpoint { get; set; } = string.Empty;
        public string ApiKey { get; set; } = string.Empty;
    }

    public TSettings GetSettings<TSettings>() =>
        this.configRoot.GetRequiredSection(typeof(TSettings).Name).Get<TSettings>()!;

    public Settings()
    {
        this.configRoot =
            new ConfigurationBuilder()
                .AddEnvironmentVariables()
                .AddUserSecrets(Assembly.GetExecutingAssembly(), optional: true)
                .Build();
    }
}

Det snabbaste sättet att komma igång med rätt konfiguration för att köra exempelkoden är att skapa en .env fil i roten av projektet (där skriptet körs).

Konfigurera följande inställningar i .env filen för Antingen Azure OpenAI eller OpenAI:

AZURE_OPENAI_API_KEY="..."
AZURE_OPENAI_ENDPOINT="https://..."
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME="..."
AZURE_OPENAI_API_VERSION="..."

OPENAI_API_KEY="sk-..."
OPENAI_ORG_ID=""
OPENAI_CHAT_MODEL_ID=""

När de har konfigurerats hämtar respektive AI-tjänstklasser de variabler som krävs och använder dem under instansieringen.

Agenter är för närvarande inte tillgängliga i Java.

Kodning

Kodningsprocessen för det här exemplet omfattar:

  1. Installation – Initiera inställningar och plugin-programmet.
  2. Agentdefinition – Skapa Chat_Completion_Agent med templaterade instruktioner och plugin-program.
  3. Chattslingan – Skriv loopen som driver interaktion mellan användare och agent.

Den fullständiga exempelkoden finns i avsnittet Slutlig . Se det avsnittet för den fullständiga implementeringen.

Ställ in

Innan du skapar en Open AI Assistant-agent kontrollerar du att konfigurationsinställningarna är tillgängliga och förbereder filresurserna.

Instansiera klassen Settings som refereras i föregående konfigurationsavsnitt . Använd inställningarna för att även skapa en OpenAIClientProvider som ska användas för agentdefinitionen samt filuppladdning och skapandet av en VectorStore.


Settings settings = new();

OpenAIClientProvider clientProvider =
    OpenAIClientProvider.ForAzureOpenAI(
        new AzureCliCredential(),
        new Uri(settings.AzureOpenAI.Endpoint));

Agenter är för närvarande inte tillgängliga i Java.

Skapa nu en tom _Vector Store för användning med filsökningsverktyget:

OpenAIClientProvider Använd för att komma åt och VectorStoreClient skapa en VectorStore.

Console.WriteLine("Creating store...");
VectorStoreClient storeClient = clientProvider.Client.GetVectorStoreClient();
CreateVectorStoreOperation operation = await storeClient.CreateVectorStoreAsync(waitUntilCompleted: true);
string storeId = operation.VectorStoreId;
def get_filepath_for_filename(filename: str) -> str:
    base_directory = os.path.dirname(os.path.realpath(__file__))
    return os.path.join(base_directory, filename)

Agenter är för närvarande inte tillgängliga i Java.

Nu ska vi deklarera de tre innehållsfilerna som beskrivs i föregående konfigurationsavsnitt :

private static readonly string[] _fileNames =
    [
        "Grimms-The-King-of-the-Golden-Mountain.txt",
        "Grimms-The-Water-of-Life.txt",
        "Grimms-The-White-Snake.txt",
    ];
filenames = [
    "Grimms-The-King-of-the-Golden-Mountain.txt",
    "Grimms-The-Water-of-Life.txt",
    "Grimms-The-White-Snake.txt",
]

Agenter är för närvarande inte tillgängliga i Java.

Ladda nu upp dessa filer och lägg till dem i Vector Store med hjälp av tidigare skapade VectorStoreClient klienter för att ladda upp varje fil med en OpenAIFileClient och lägga till den i Vector Store, vilket bevarar de resulterande filreferenserna.

Dictionary<string, OpenAIFile> fileReferences = [];

Console.WriteLine("Uploading files...");
OpenAIFileClient fileClient = clientProvider.Client.GetOpenAIFileClient();
foreach (string fileName in _fileNames)
{
    OpenAIFile fileInfo = await fileClient.UploadFileAsync(fileName, FileUploadPurpose.Assistants);
    await storeClient.AddFileToVectorStoreAsync(storeId, fileInfo.Id, waitUntilCompleted: true);
    fileReferences.Add(fileInfo.Id, fileInfo);
}

Agenter är för närvarande inte tillgängliga i Java.

Agentdefinition

Nu är vi redo att instansiera en OpenAI Assistant-agent. Agenten är konfigurerad med sin målmodell, instruktioner och filsökningsverktyget aktiverat. Dessutom associerar vi explicit Vector Store med filsökningsverktyget.

Vi kommer att använda OpenAIClientProvider igen som en del av att skapa OpenAIAssistantAgent:

Console.WriteLine("Defining agent...");
OpenAIAssistantAgent agent =
    await OpenAIAssistantAgent.CreateAsync(
        clientProvider,
        new OpenAIAssistantDefinition(settings.AzureOpenAI.ChatModelDeployment)
        {
            Name = "SampleAssistantAgent",
            Instructions =
                """
                The document store contains the text of fictional stories.
                Always analyze the document store to provide an answer to the user's question.
                Never rely on your knowledge of stories not included in the document store.
                Always format response using markdown.
                """,
            EnableFileSearch = true,
            VectorStoreId = storeId,
        },
        new Kernel());
agent = await AzureAssistantAgent.create(
    kernel=Kernel(),
    service_id="agent",
    name="SampleAssistantAgent",
    instructions="""
        The document store contains the text of fictional stories.
        Always analyze the document store to provide an answer to the user's question.
        Never rely on your knowledge of stories not included in the document store.
        Always format response using markdown.
        """,
    enable_file_search=True,
    vector_store_filenames=[get_filepath_for_filename(filename) for filename in filenames],
)

Agenter är för närvarande inte tillgängliga i Java.

Chattloopen

Äntligen kan vi samordna interaktionen mellan användaren och agenten. Börja med att skapa en assistenttråd för att behålla konversationstillståndet och skapa en tom loop.

Nu ska vi också se till att resurserna tas bort i slutet av körningen för att minimera onödiga avgifter.

Console.WriteLine("Creating thread...");
string threadId = await agent.CreateThreadAsync();

Console.WriteLine("Ready!");

try
{
    bool isComplete = false;
    do
    {
        // Processing occurrs here
    } while (!isComplete);
}
finally
{
    Console.WriteLine();
    Console.WriteLine("Cleaning-up...");
    await Task.WhenAll(
        [
            agent.DeleteThreadAsync(threadId),
            agent.DeleteAsync(),
            storeClient.DeleteVectorStoreAsync(storeId),
            ..fileReferences.Select(fileReference => fileClient.DeleteFileAsync(fileReference.Key))
        ]);
}
print("Creating thread...")
thread_id = await agent.create_thread()

try:
    is_complete: bool = False
    while not is_complete:
        # Processing occurs here

finally:
    print("Cleaning up resources...")
    if agent is not None:
        [await agent.delete_file(file_id) for file_id in agent.file_search_file_ids]
        await agent.delete_thread(thread_id)
        await agent.delete()

Agenter är för närvarande inte tillgängliga i Java.

Nu ska vi samla in användarindata i föregående loop. I det här fallet ignoreras tomma indata och termen EXIT signalerar att konversationen har slutförts. Giltigt nput läggs till i assistenttråden som ett användarmeddelande.

Console.WriteLine();
Console.Write("> ");
string input = Console.ReadLine();
if (string.IsNullOrWhiteSpace(input))
{
    continue;
}
if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
{
    isComplete = true;
    break;
}

await agent.AddChatMessageAsync(threadId, new ChatMessageContent(AuthorRole.User, input));
Console.WriteLine();
user_input = input("User:> ")
if not user_input:
    continue

if user_input.lower() == "exit":
    is_complete = True

await agent.add_chat_message(
    thread_id=thread_id, message=ChatMessageContent(role=AuthorRole.USER, content=user_input)
)

Agenter är för närvarande inte tillgängliga i Java.

Innan vi anropar agentsvaret ska vi lägga till en hjälpmetod för att formatera om unicode-anteckningsparenteserna till ANSI-hakparenteser.

private static string ReplaceUnicodeBrackets(this string content) =>
    content?.Replace('【', '[').Replace('】', ']');
# No special handling required.

Agenter är för närvarande inte tillgängliga i Java.

Om du vill generera ett agentsvar på användarindata anropar du agenten genom att ange assistenttråden. I det här exemplet väljer vi ett strömmat svar och samlar in eventuella associerade citatanteckningar för visning i slutet av svarscykeln. Observera att varje strömmat segment formateras om med hjälp av den tidigare hjälpmetoden.

List<StreamingAnnotationContent> footnotes = [];
await foreach (StreamingChatMessageContent chunk in agent.InvokeStreamingAsync(threadId))
{
    // Capture annotations for footnotes
    footnotes.AddRange(chunk.Items.OfType<StreamingAnnotationContent>());

    // Render chunk with replacements for unicode brackets.
    Console.Write(chunk.Content.ReplaceUnicodeBrackets());
}

Console.WriteLine();

// Render footnotes for captured annotations.
if (footnotes.Count > 0)
{
    Console.WriteLine();
    foreach (StreamingAnnotationContent footnote in footnotes)
    {
        Console.WriteLine($"#{footnote.Quote.ReplaceUnicodeBrackets()} - {fileReferences[footnote.FileId!].Filename} (Index: {footnote.StartIndex} - {footnote.EndIndex})");
    }
}
footnotes: list[StreamingAnnotationContent] = []
async for response in agent.invoke_stream(thread_id=thread_id):
    footnotes.extend([item for item in response.items if isinstance(item, StreamingAnnotationContent)])

    print(f"{response.content}", end="", flush=True)

print()

if len(footnotes) > 0:
    for footnote in footnotes:
        print(
            f"\n`{footnote.quote}` => {footnote.file_id} "
            f"(Index: {footnote.start_index} - {footnote.end_index})"
        )

Agenter är för närvarande inte tillgängliga i Java.

Slutgiltig

För att samla alla steg har vi den slutliga koden för det här exemplet. Den fullständiga implementeringen tillhandahålls nedan.

Prova att använda följande föreslagna indata:

  1. Vad är styckeantalet för var och en av berättelserna?
  2. Skapa en tabell som identifierar huvudpersonen och antagonisten för varje berättelse.
  3. Vad är moralen i Den vita ormen?
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Azure.Identity;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Agents.OpenAI;
using Microsoft.SemanticKernel.ChatCompletion;
using OpenAI.Files;
using OpenAI.VectorStores;

namespace AgentsSample;

public static class Program
{
    private static readonly string[] _fileNames =
        [
            "Grimms-The-King-of-the-Golden-Mountain.txt",
            "Grimms-The-Water-of-Life.txt",
            "Grimms-The-White-Snake.txt",
        ];

    /// <summary>
    /// The main entry point for the application.
    /// </summary>
    /// <returns>A <see cref="Task"/> representing the asynchronous operation.</returns>
    public static async Task Main()
    {
        // Load configuration from environment variables or user secrets.
        Settings settings = new();

        OpenAIClientProvider clientProvider =
            OpenAIClientProvider.ForAzureOpenAI(
                new AzureCliCredential(),
                new Uri(settings.AzureOpenAI.Endpoint));

        Console.WriteLine("Creating store...");
        VectorStoreClient storeClient = clientProvider.Client.GetVectorStoreClient();
        CreateVectorStoreOperation operation = await storeClient.CreateVectorStoreAsync(waitUntilCompleted: true);
        string storeId = operation.VectorStoreId;

        // Retain file references.
        Dictionary<string, OpenAIFile> fileReferences = [];

        Console.WriteLine("Uploading files...");
        OpenAIFileClient fileClient = clientProvider.Client.GetOpenAIFileClient();
        foreach (string fileName in _fileNames)
        {
            OpenAIFile fileInfo = await fileClient.UploadFileAsync(fileName, FileUploadPurpose.Assistants);
            await storeClient.AddFileToVectorStoreAsync(storeId, fileInfo.Id, waitUntilCompleted: true);
            fileReferences.Add(fileInfo.Id, fileInfo);
        }


        Console.WriteLine("Defining agent...");
        OpenAIAssistantAgent agent =
            await OpenAIAssistantAgent.CreateAsync(
                clientProvider,
                new OpenAIAssistantDefinition(settings.AzureOpenAI.ChatModelDeployment)
                {
                    Name = "SampleAssistantAgent",
                    Instructions =
                        """
                        The document store contains the text of fictional stories.
                        Always analyze the document store to provide an answer to the user's question.
                        Never rely on your knowledge of stories not included in the document store.
                        Always format response using markdown.
                        """,
                    EnableFileSearch = true,
                    VectorStoreId = storeId,
                },
                new Kernel());

        Console.WriteLine("Creating thread...");
        string threadId = await agent.CreateThreadAsync();

        Console.WriteLine("Ready!");

        try
        {
            bool isComplete = false;
            do
            {
                Console.WriteLine();
                Console.Write("> ");
                string input = Console.ReadLine();
                if (string.IsNullOrWhiteSpace(input))
                {
                    continue;
                }
                if (input.Trim().Equals("EXIT", StringComparison.OrdinalIgnoreCase))
                {
                    isComplete = true;
                    break;
                }

                await agent.AddChatMessageAsync(threadId, new ChatMessageContent(AuthorRole.User, input));
                Console.WriteLine();

                List<StreamingAnnotationContent> footnotes = [];
                await foreach (StreamingChatMessageContent chunk in agent.InvokeStreamingAsync(threadId))
                {
                    // Capture annotations for footnotes
                    footnotes.AddRange(chunk.Items.OfType<StreamingAnnotationContent>());

                    // Render chunk with replacements for unicode brackets.
                    Console.Write(chunk.Content.ReplaceUnicodeBrackets());
                }

                Console.WriteLine();

                // Render footnotes for captured annotations.
                if (footnotes.Count > 0)
                {
                    Console.WriteLine();
                    foreach (StreamingAnnotationContent footnote in footnotes)
                    {
                        Console.WriteLine($"#{footnote.Quote.ReplaceUnicodeBrackets()} - {fileReferences[footnote.FileId!].Filename} (Index: {footnote.StartIndex} - {footnote.EndIndex})");
                    }
                }
            } while (!isComplete);
        }
        finally
        {
            Console.WriteLine();
            Console.WriteLine("Cleaning-up...");
            await Task.WhenAll(
                [
                    agent.DeleteThreadAsync(threadId),
                    agent.DeleteAsync(),
                    storeClient.DeleteVectorStoreAsync(storeId),
                    ..fileReferences.Select(fileReference => fileClient.DeleteFileAsync(fileReference.Key))
                ]);
        }
    }

    private static string ReplaceUnicodeBrackets(this string content) =>
        content?.Replace('【', '[').Replace('】', ']');
}
import asyncio
import os

from semantic_kernel.agents.open_ai.azure_assistant_agent import AzureAssistantAgent
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.streaming_annotation_content import StreamingAnnotationContent
from semantic_kernel.contents.utils.author_role import AuthorRole
from semantic_kernel.kernel import Kernel


def get_filepath_for_filename(filename: str) -> str:
    base_directory = os.path.dirname(os.path.realpath(__file__))
    return os.path.join(base_directory, filename)


filenames = [
    "Grimms-The-King-of-the-Golden-Mountain.txt",
    "Grimms-The-Water-of-Life.txt",
    "Grimms-The-White-Snake.txt",
]


async def main():
    agent = await AzureAssistantAgent.create(
        kernel=Kernel(),
        service_id="agent",
        name="SampleAssistantAgent",
        instructions="""
            The document store contains the text of fictional stories.
            Always analyze the document store to provide an answer to the user's question.
            Never rely on your knowledge of stories not included in the document store.
            Always format response using markdown.
            """,
        enable_file_search=True,
        vector_store_filenames=[get_filepath_for_filename(filename) for filename in filenames],
    )

    print("Creating thread...")
    thread_id = await agent.create_thread()

    try:
        is_complete: bool = False
        while not is_complete:
            user_input = input("User:> ")
            if not user_input:
                continue

            if user_input.lower() == "exit":
                is_complete = True
                break

            await agent.add_chat_message(
                thread_id=thread_id, message=ChatMessageContent(role=AuthorRole.USER, content=user_input)
            )

            footnotes: list[StreamingAnnotationContent] = []
            async for response in agent.invoke_stream(thread_id=thread_id):
                footnotes.extend([item for item in response.items if isinstance(item, StreamingAnnotationContent)])

                print(f"{response.content}", end="", flush=True)

            print()

            if len(footnotes) > 0:
                for footnote in footnotes:
                    print(
                        f"\n`{footnote.quote}` => {footnote.file_id} "
                        f"(Index: {footnote.start_index} - {footnote.end_index})"
                    )

    finally:
        print("Cleaning up resources...")
        if agent is not None:
            [await agent.delete_file(file_id) for file_id in agent.file_search_file_ids]
            await agent.delete_thread(thread_id)
            await agent.delete()


if __name__ == "__main__":
    asyncio.run(main())

Agenter är för närvarande inte tillgängliga i Java.