Dela via


PredictionFunctionExtensions.CreateTimeSeriesEngine Method

Definition

Overloads

CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, PredictionEngineOptions)

TimeSeriesPredictionEngine<TSrc,TDst> creates a prediction engine for a time series pipeline. It updates the state of time series model with observations seen at prediction phase and allows checkpointing the model.

CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, Boolean, SchemaDefinition, SchemaDefinition)

TimeSeriesPredictionEngine<TSrc,TDst> creates a prediction engine for a time series pipeline. It updates the state of time series model with observations seen at prediction phase and allows checkpointing the model.

CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, PredictionEngineOptions)

TimeSeriesPredictionEngine<TSrc,TDst> creates a prediction engine for a time series pipeline. It updates the state of time series model with observations seen at prediction phase and allows checkpointing the model.

public static Microsoft.ML.Transforms.TimeSeries.TimeSeriesPredictionEngine<TSrc,TDst> CreateTimeSeriesEngine<TSrc,TDst> (this Microsoft.ML.ITransformer transformer, Microsoft.ML.Runtime.IHostEnvironment env, Microsoft.ML.PredictionEngineOptions options) where TSrc : class where TDst : class, new();
static member CreateTimeSeriesEngine : Microsoft.ML.ITransformer * Microsoft.ML.Runtime.IHostEnvironment * Microsoft.ML.PredictionEngineOptions -> Microsoft.ML.Transforms.TimeSeries.TimeSeriesPredictionEngine<'Src, 'Dst (requires 'Src : null and 'Dst : null and 'Dst : (new : unit -> 'Dst))> (requires 'Src : null and 'Dst : null and 'Dst : (new : unit -> 'Dst))
<Extension()>
Public Function CreateTimeSeriesEngine(Of TSrc As Class, TDst As Class) (transformer As ITransformer, env As IHostEnvironment, options As PredictionEngineOptions) As TimeSeriesPredictionEngine(Of TSrc, TDst)

Type Parameters

TSrc

Class describing input schema to the model.

TDst

Class describing the output schema of the prediction.

Parameters

transformer
ITransformer

The time series pipeline in the form of a ITransformer.

options
PredictionEngineOptions

Advanced configuration options.

Returns

Examples

This is an example for detecting change point using Singular Spectrum Analysis (SSA) model.

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class DetectChangePointBySsa
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). It demonstrates stateful prediction
        // engine that updates the state of the model and allows for
        // saving/reloading. The estimator is applied then to identify points where
        // data distribution changed. This estimator can account for temporal
        // seasonality in the data.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern
            const int SeasonalitySize = 5;
            const int TrainingSeasons = 3;
            const int TrainingSize = SeasonalitySize * TrainingSeasons;
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup SsaChangePointDetector arguments
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ChangePointPrediction.Prediction);
            double confidence = 95;
            int changeHistoryLength = 8;

            // Train the change point detector.
            ITransformer model = ml.Transforms.DetectChangePointBySsa(
                outputColumnName, inputColumnName, confidence, changeHistoryLength,
                TrainingSize, SeasonalitySize + 1).Fit(dataView);

            // Create a prediction engine from the model for feeding new data.
            var engine = model.CreateTimeSeriesEngine<TimeSeriesData,
                ChangePointPrediction>(ml);

            // Start streaming new data points with no change point to the
            // prediction engine.
            Console.WriteLine($"Output from ChangePoint predictions on new data:");
            Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");

            // Output from ChangePoint predictions on new data:
            // Data    Alert   Score   P-Value Martingale value

            for (int i = 0; i < 5; i++)
                PrintPrediction(i, engine.Predict(new TimeSeriesData(i)));

            // 0       0      -1.01    0.50    0.00
            // 1       0      -0.24    0.22    0.00
            // 2       0      -0.31    0.30    0.00
            // 3       0       0.44    0.01    0.00
            // 4       0       2.16    0.00    0.24

            // Now stream data points that reflect a change in trend.
            for (int i = 0; i < 5; i++)
            {
                int value = (i + 1) * 100;
                PrintPrediction(value, engine.Predict(new TimeSeriesData(value)));
            }
            // 100     0      86.23    0.00    2076098.24
            // 200     0     171.38    0.00    809668524.21
            // 300     1     256.83    0.01    22130423541.93    <-- alert is on, note that delay is expected
            // 400     0     326.55    0.04    241162710263.29
            // 500     0     364.82    0.08    597660527041.45   <-- saved to disk

            // Now we demonstrate saving and loading the model.

            // Save the model that exists within the prediction engine.
            // The engine has been updating this model with every new data point.
            var modelPath = "model.zip";
            engine.CheckPoint(ml, modelPath);

            // Load the model.
            using (var file = File.OpenRead(modelPath))
                model = ml.Model.Load(file, out DataViewSchema schema);

            // We must create a new prediction engine from the persisted model.
            engine = model.CreateTimeSeriesEngine<TimeSeriesData,
                ChangePointPrediction>(ml);

            // Run predictions on the loaded model.
            for (int i = 0; i < 5; i++)
            {
                int value = (i + 1) * 100;
                PrintPrediction(value, engine.Predict(new TimeSeriesData(value)));
            }

            // 100     0     -58.58    0.15    1096021098844.34  <-- loaded from disk and running new predictions
            // 200     0     -41.24    0.20    97579154688.98
            // 300     0     -30.61    0.24    95319753.87
            // 400     0      58.87    0.38    14.24
            // 500     0     219.28    0.36    0.05

        }

        private static void PrintPrediction(float value, ChangePointPrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2], prediction.Prediction[3]);

        class ChangePointPrediction
        {
            [VectorType(4)]
            public double[] Prediction { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

Applies to

CreateTimeSeriesEngine<TSrc,TDst>(ITransformer, IHostEnvironment, Boolean, SchemaDefinition, SchemaDefinition)

TimeSeriesPredictionEngine<TSrc,TDst> creates a prediction engine for a time series pipeline. It updates the state of time series model with observations seen at prediction phase and allows checkpointing the model.

public static Microsoft.ML.Transforms.TimeSeries.TimeSeriesPredictionEngine<TSrc,TDst> CreateTimeSeriesEngine<TSrc,TDst> (this Microsoft.ML.ITransformer transformer, Microsoft.ML.Runtime.IHostEnvironment env, bool ignoreMissingColumns = false, Microsoft.ML.Data.SchemaDefinition inputSchemaDefinition = default, Microsoft.ML.Data.SchemaDefinition outputSchemaDefinition = default) where TSrc : class where TDst : class, new();
static member CreateTimeSeriesEngine : Microsoft.ML.ITransformer * Microsoft.ML.Runtime.IHostEnvironment * bool * Microsoft.ML.Data.SchemaDefinition * Microsoft.ML.Data.SchemaDefinition -> Microsoft.ML.Transforms.TimeSeries.TimeSeriesPredictionEngine<'Src, 'Dst (requires 'Src : null and 'Dst : null and 'Dst : (new : unit -> 'Dst))> (requires 'Src : null and 'Dst : null and 'Dst : (new : unit -> 'Dst))
<Extension()>
Public Function CreateTimeSeriesEngine(Of TSrc As Class, TDst As Class) (transformer As ITransformer, env As IHostEnvironment, Optional ignoreMissingColumns As Boolean = false, Optional inputSchemaDefinition As SchemaDefinition = Nothing, Optional outputSchemaDefinition As SchemaDefinition = Nothing) As TimeSeriesPredictionEngine(Of TSrc, TDst)

Type Parameters

TSrc

Class describing input schema to the model.

TDst

Class describing the output schema of the prediction.

Parameters

transformer
ITransformer

The time series pipeline in the form of a ITransformer.

ignoreMissingColumns
Boolean

To ignore missing columns. Default is false.

inputSchemaDefinition
SchemaDefinition

Input schema definition. Default is null.

outputSchemaDefinition
SchemaDefinition

Output schema definition. Default is null.

Returns

Examples

This is an example for detecting change point using Singular Spectrum Analysis (SSA) model.

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class DetectChangePointBySsa
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). It demonstrates stateful prediction
        // engine that updates the state of the model and allows for
        // saving/reloading. The estimator is applied then to identify points where
        // data distribution changed. This estimator can account for temporal
        // seasonality in the data.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern
            const int SeasonalitySize = 5;
            const int TrainingSeasons = 3;
            const int TrainingSize = SeasonalitySize * TrainingSeasons;
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup SsaChangePointDetector arguments
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ChangePointPrediction.Prediction);
            double confidence = 95;
            int changeHistoryLength = 8;

            // Train the change point detector.
            ITransformer model = ml.Transforms.DetectChangePointBySsa(
                outputColumnName, inputColumnName, confidence, changeHistoryLength,
                TrainingSize, SeasonalitySize + 1).Fit(dataView);

            // Create a prediction engine from the model for feeding new data.
            var engine = model.CreateTimeSeriesEngine<TimeSeriesData,
                ChangePointPrediction>(ml);

            // Start streaming new data points with no change point to the
            // prediction engine.
            Console.WriteLine($"Output from ChangePoint predictions on new data:");
            Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");

            // Output from ChangePoint predictions on new data:
            // Data    Alert   Score   P-Value Martingale value

            for (int i = 0; i < 5; i++)
                PrintPrediction(i, engine.Predict(new TimeSeriesData(i)));

            // 0       0      -1.01    0.50    0.00
            // 1       0      -0.24    0.22    0.00
            // 2       0      -0.31    0.30    0.00
            // 3       0       0.44    0.01    0.00
            // 4       0       2.16    0.00    0.24

            // Now stream data points that reflect a change in trend.
            for (int i = 0; i < 5; i++)
            {
                int value = (i + 1) * 100;
                PrintPrediction(value, engine.Predict(new TimeSeriesData(value)));
            }
            // 100     0      86.23    0.00    2076098.24
            // 200     0     171.38    0.00    809668524.21
            // 300     1     256.83    0.01    22130423541.93    <-- alert is on, note that delay is expected
            // 400     0     326.55    0.04    241162710263.29
            // 500     0     364.82    0.08    597660527041.45   <-- saved to disk

            // Now we demonstrate saving and loading the model.

            // Save the model that exists within the prediction engine.
            // The engine has been updating this model with every new data point.
            var modelPath = "model.zip";
            engine.CheckPoint(ml, modelPath);

            // Load the model.
            using (var file = File.OpenRead(modelPath))
                model = ml.Model.Load(file, out DataViewSchema schema);

            // We must create a new prediction engine from the persisted model.
            engine = model.CreateTimeSeriesEngine<TimeSeriesData,
                ChangePointPrediction>(ml);

            // Run predictions on the loaded model.
            for (int i = 0; i < 5; i++)
            {
                int value = (i + 1) * 100;
                PrintPrediction(value, engine.Predict(new TimeSeriesData(value)));
            }

            // 100     0     -58.58    0.15    1096021098844.34  <-- loaded from disk and running new predictions
            // 200     0     -41.24    0.20    97579154688.98
            // 300     0     -30.61    0.24    95319753.87
            // 400     0      58.87    0.38    14.24
            // 500     0     219.28    0.36    0.05

        }

        private static void PrintPrediction(float value, ChangePointPrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2], prediction.Prediction[3]);

        class ChangePointPrediction
        {
            [VectorType(4)]
            public double[] Prediction { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

Applies to