Databricks Runtime 6.0 för ML (EoS)
Kommentar
Stödet för den här Databricks Runtime-versionen har upphört. Information om slutdatumet för support finns i Historik över supportens slut. Alla Databricks Runtime-versioner som stöds finns i Databricks Runtime-versionsanteckningar och kompatibilitet.
Databricks släppte den här versionen i oktober 2019.
Databricks Runtime 6.0 för Machine Learning ger en färdig miljö för maskininlärning och datavetenskap baserat på Databricks Runtime 6.0 (EoS). Databricks Runtime ML innehåller många populära maskininlärningsbibliotek, inklusive TensorFlow, PyTorch, Keras och XGBoost. Den stöder även distribuerad djupinlärningsträning med Horovod.
Mer information, inklusive instruktioner för att skapa ett Databricks Runtime ML-kluster, finns i AI och maskininlärning på Databricks.
Nya funktioner
Databricks Runtime 6.0 ML bygger på Databricks Runtime 6.0. Information om nyheter i Databricks Runtime 6.0 finns i viktig information om Databricks Runtime 6.0 (EoS).
Fråga MLflow-experimentdata i stor skala med hjälp av den nya MLflow Spark-datakällan
Spark-datakällan för MLflow-experiment tillhandahåller nu ett standard-API för att läsa in MLflow-experimentkörningsdata. Detta möjliggör storskaliga frågor och analyser av MLflow-experimentdata med hjälp av DataFrame-API:er. För ett givet experiment innehåller DataFrame run_ids, mått, params, taggar, start_time, end_time, status och artifact_uri för artefakter. Se MLflow-experiment.
Förbättringar
Hyperopt GA
Hyperopt på Azure Databricks är nu allmänt tillgängligt. Anmärkningsvärda förbättringar sedan den offentliga förhandsversionen inkluderar stöd för MLflow-loggning på Spark-arbetare, korrekt hantering av PySpark-sändningsvariabler samt en ny guide om modellval med Hyperopt. Vi har också åtgärdat små buggar i loggmeddelanden, felhantering, användargränssnitt och gjort våra dokument mer läsvänliga. Mer information finns i Hyperopt-dokumentationen.
Vi har uppdaterat hur Azure Databricks loggar Hyperopt-experiment så att du nu kan logga ett anpassat mått under Hyperopt-körningar genom att skicka måttet
mlflow.log_metric
till funktionen (se log_metric). Det här är användbart om du vill logga anpassade mått utöver förlust, som loggas som standard närhyperopt.fmin
funktionen anropas.MLflow
Uppgraderade maskininlärningsbibliotek
- Horovod uppgraderas från 0.16.4 till 0.18.1
- MLflow har uppgraderats från 1.0.0 till 1.2.0
Anaconda-distribution uppgraderad från 5.2.0 till 2019.03
Borttagning
Databricks ML-modellexport tas bort. Använd MLeap för att importera och exportera modeller i stället.
I Hyperopt-biblioteket tas följande egenskaper
hyperopt.SparkTrials
bort:SparkTrials.successful_trials_count
SparkTrials.failed_trials_count
SparkTrials.cancelled_trials_count
SparkTrials.total_trials_count
De ersätts med följande funktioner:
SparkTrials.count_successful_trials()
SparkTrials.count_failed_trials()
SparkTrials.count_cancelled_trials()
SparkTrials.count_total_trials()
Systemmiljö
Systemmiljön i Databricks Runtime 6.0 ML skiljer sig från Databricks Runtime 6.0 på följande sätt:
- DBUtils: Innehåller inte biblioteksverktyget (dbutils.library) (äldre).
Bibliotek
I följande avsnitt visas de bibliotek som ingår i Databricks Runtime 6.0 ML som skiljer sig från de som ingår i Databricks Runtime 6.0.
Bibliotek på den översta nivån
Databricks Runtime 6.0 ML innehåller följande bibliotek på den översta nivån:
- GraphFrames
- Horovod och HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Python-bibliotek
Databricks Runtime 6.0 ML använder Conda för Python-pakethantering och innehåller många populära ML-paket. I följande avsnitt beskrivs Conda-miljön för Databricks Runtime 6.0 ML.
Python 3 på CPU-kluster
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=2.0=cpu_0
- _tflow_select=2.3.0=mkl
- absl-py=0.7.1=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.6=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py37_0
- configparser=3.7.4=py37_0
- cryptography=2.6.1=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.5=py37_0
- gitpython=2.1.11=py37_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=h9c2bf20_1
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py37_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- keras=2.2.4=0
- keras-applications=1.0.8=py_0
- keras-base=2.2.4=py37_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.8.0=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=he6710b0_0
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- mock=3.0.5=py37_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py37_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.8.0=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37he6710b0_0
- py-xgboost-cpu=0.90=py37_0
- pyasn1=0.4.6=py_0
- pycparser=2.19=py37_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch-cpu=1.1.0=py3.7_cpu_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py37_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.13.1=py37hf484d3e_0
- tensorflow=1.13.1=mkl_py37h54b294f_0
- tensorflow-base=1.13.1=mkl_py37h7ce6ba3_0
- tensorflow-estimator=1.13.0=py_0
- tensorflow-mkl=1.13.1=h4fcabd2_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision-cpu=0.3.0=py37_cuNone_1
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.9.0
- docker==4.0.2
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.18.1
- hyperopt==0.1.2.db8
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.2.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.8
prefix: /databricks/conda/envs/databricks-ml
Spark-paket som innehåller Python-moduler
Spark-paket | Python-modul | Version |
---|---|---|
graphframes | graphframes | 0.7.0-db1-spark2.4 |
spark-deep-learning | sparkdl | 1.5.0-db5-spark2.4 |
tensorframes | tensorframes | 0.7.0-s_2.11 |
R-bibliotek
R-biblioteken är identiska med R-biblioteken i Databricks Runtime 6.0.
Java- och Scala-bibliotek (Scala 2.11-kluster)
Förutom Java- och Scala-bibliotek i Databricks Runtime 6.0 innehåller Databricks Runtime 6.0 ML följande JAR:er:
Grupp-ID | Artefakt-ID | Version |
---|---|---|
com.databricks | spark-deep-learning | 1.5.0-db5-spark2.4 |
com.typesafe.akka | akka-actor_2.11 | 2.3.11 |
ml.combust.mleap | mleap-databricks-runtime_2.11 | 0.14.0 |
ml.dmlc | xgboost4j | 0.90 |
ml.dmlc | xgboost4j-spark | 0.90 |
org.graphframes | graphframes_2.11 | 0.7.0-db1-spark2.4 |
org.mlflow | mlflow-client | 1.2.0 |
org.tensorflow | libtensorflow | 1.13.1 |
org.tensorflow | libtensorflow_jni | 1.13.1 |
org.tensorflow | spark-tensorflow-connector_2.11 | 1.13.1 |
org.tensorflow | tensorflow | 1.13.1 |
org.tensorframes | tensorframes | 0.7.0-s_2.11 |