Рабочие области Microsoft.MachineLearningServices/schedules 2023-04-01
Определение ресурсов Bicep
Тип ресурса рабочих областей и расписаний можно развернуть с помощью операций, предназначенных для следующих операций:
- группы ресурсов . См. команды развертывания группы ресурсов
Список измененных свойств в каждой версии API см. в журнала изменений.
Формат ресурса
Чтобы создать ресурс Microsoft.MachineLearningServices/workspaces/schedules, добавьте следующий Bicep в шаблон.
resource symbolicname 'Microsoft.MachineLearningServices/workspaces/schedules@2023-04-01' = {
parent: resourceSymbolicName
name: 'string'
properties: {
action: {
actionType: 'string'
// For remaining properties, see ScheduleActionBase objects
}
description: 'string'
displayName: 'string'
isEnabled: bool
properties: {
{customized property}: 'string'
}
tags: {
{customized property}: 'string'
}
trigger: {
endTime: 'string'
startTime: 'string'
timeZone: 'string'
triggerType: 'string'
// For remaining properties, see TriggerBase objects
}
}
}
Объекты ScheduleActionBase
Задайте свойство actionType, чтобы указать тип объекта.
Для CreateJobиспользуйте:
{
actionType: 'CreateJob'
jobDefinition: {
componentId: 'string'
computeId: 'string'
description: 'string'
displayName: 'string'
experimentName: 'string'
identity: {
identityType: 'string'
// For remaining properties, see IdentityConfiguration objects
}
isArchived: bool
properties: {
{customized property}: 'string'
}
services: {
{customized property}: {
endpoint: 'string'
jobServiceType: 'string'
nodes: {
nodesValueType: 'string'
// For remaining properties, see Nodes objects
}
port: int
properties: {
{customized property}: 'string'
}
}
}
tags: {
{customized property}: 'string'
}
jobType: 'string'
// For remaining properties, see JobBaseProperties objects
}
}
Для InvokeBatchEndpointиспользуйте:
{
actionType: 'InvokeBatchEndpoint'
endpointInvocationDefinition: any(...)
}
Объекты EarlyTerminationPolicy
Задайте свойство policyType, чтобы указать тип объекта.
Для Banditиспользуйте:
{
policyType: 'Bandit'
slackAmount: int
slackFactor: int
}
Для MedianStoppingиспользуйте:
{
policyType: 'MedianStopping'
}
Для TruncationSelectionиспользуйте:
{
policyType: 'TruncationSelection'
truncationPercentage: int
}
Объекты сезонности
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
mode: 'Auto'
}
Для пользовательских
{
mode: 'Custom'
value: int
}
Объекты ForecastHorizon
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
mode: 'Auto'
}
Для пользовательских
{
mode: 'Custom'
value: int
}
Объекты ВыборкиAlgorithm
Задайте свойство выборкиAlgorithmType, чтобы указать тип объекта.
Для Байезианаиспользуйте:
{
samplingAlgorithmType: 'Bayesian'
}
Для сеткииспользуйте:
{
samplingAlgorithmType: 'Grid'
}
Для случайныхиспользуйте:
{
rule: 'string'
samplingAlgorithmType: 'Random'
seed: int
}
Объекты JobBaseProperties
Задайте свойство jobType, чтобы указать тип объекта.
Для AutoMLиспользуйте:
{
environmentId: 'string'
environmentVariables: {
{customized property}: 'string'
}
jobType: 'AutoML'
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
resources: {
dockerArgs: 'string'
instanceCount: int
instanceType: 'string'
properties: {
{customized property}: any(...)
}
shmSize: 'string'
}
taskDetails: {
logVerbosity: 'string'
targetColumnName: 'string'
trainingData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
taskType: 'string'
// For remaining properties, see AutoMLVertical objects
}
}
Для команды используйте следующую команду:
{
codeId: 'string'
command: 'string'
distribution: {
distributionType: 'string'
// For remaining properties, see DistributionConfiguration objects
}
environmentId: 'string'
environmentVariables: {
{customized property}: 'string'
}
inputs: {
{customized property}: {
description: 'string'
jobInputType: 'string'
// For remaining properties, see JobInput objects
}
}
jobType: 'Command'
limits: {
jobLimitsType: 'string'
timeout: 'string'
}
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
resources: {
dockerArgs: 'string'
instanceCount: int
instanceType: 'string'
properties: {
{customized property}: any(...)
}
shmSize: 'string'
}
}
Для конвейераиспользуйте:
{
inputs: {
{customized property}: {
description: 'string'
jobInputType: 'string'
// For remaining properties, see JobInput objects
}
}
jobs: {
{customized property}: any(...)
}
jobType: 'Pipeline'
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
settings: any(...)
sourceJobId: 'string'
}
Для
{
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
inputs: {
{customized property}: {
description: 'string'
jobInputType: 'string'
// For remaining properties, see JobInput objects
}
}
jobType: 'Sweep'
limits: {
jobLimitsType: 'string'
maxConcurrentTrials: int
maxTotalTrials: int
timeout: 'string'
trialTimeout: 'string'
}
objective: {
goal: 'string'
primaryMetric: 'string'
}
outputs: {
{customized property}: {
description: 'string'
jobOutputType: 'string'
// For remaining properties, see JobOutput objects
}
}
samplingAlgorithm: {
samplingAlgorithmType: 'string'
// For remaining properties, see SamplingAlgorithm objects
}
searchSpace: any(...)
trial: {
codeId: 'string'
command: 'string'
distribution: {
distributionType: 'string'
// For remaining properties, see DistributionConfiguration objects
}
environmentId: 'string'
environmentVariables: {
{customized property}: 'string'
}
resources: {
dockerArgs: 'string'
instanceCount: int
instanceType: 'string'
properties: {
{customized property}: any(...)
}
shmSize: 'string'
}
}
}
Объекты JobOutput
Задайте свойство jobOutputType, чтобы указать тип объекта.
Для custom_modelиспользуйте:
{
jobOutputType: 'custom_model'
mode: 'string'
uri: 'string'
}
Для mlflow_modelиспользуйте:
{
jobOutputType: 'mlflow_model'
mode: 'string'
uri: 'string'
}
Для mltableиспользуйте:
{
jobOutputType: 'mltable'
mode: 'string'
uri: 'string'
}
Для triton_modelиспользуйте:
{
jobOutputType: 'triton_model'
mode: 'string'
uri: 'string'
}
Для uri_fileиспользуйте:
{
jobOutputType: 'uri_file'
mode: 'string'
uri: 'string'
}
Для uri_folderиспользуйте:
{
jobOutputType: 'uri_folder'
mode: 'string'
uri: 'string'
}
Объекты TargetRollingWindowSize
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
mode: 'Auto'
}
Для пользовательских
{
mode: 'Custom'
value: int
}
Объекты AutoMLVertical
Задайте свойство taskType, чтобы указать тип объекта.
Для классификациииспользуйте:
{
cvSplitColumnNames: [
'string'
]
featurizationSettings: {
blockedTransformers: [
'string'
]
columnNameAndTypes: {
{customized property}: 'string'
}
datasetLanguage: 'string'
enableDnnFeaturization: bool
mode: 'string'
transformerParams: {
{customized property}: [
{
fields: [
'string'
]
parameters: any(...)
}
]
}
}
limitSettings: {
enableEarlyTermination: bool
exitScore: int
maxConcurrentTrials: int
maxCoresPerTrial: int
maxTrials: int
timeout: 'string'
trialTimeout: 'string'
}
nCrossValidations: {
mode: 'string'
// For remaining properties, see NCrossValidations objects
}
positiveLabel: 'string'
primaryMetric: 'string'
taskType: 'Classification'
testData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
testDataSize: int
trainingSettings: {
allowedTrainingAlgorithms: [
'string'
]
blockedTrainingAlgorithms: [
'string'
]
enableDnnTraining: bool
enableModelExplainability: bool
enableOnnxCompatibleModels: bool
enableStackEnsemble: bool
enableVoteEnsemble: bool
ensembleModelDownloadTimeout: 'string'
stackEnsembleSettings: {
stackMetaLearnerKWargs: any(...)
stackMetaLearnerTrainPercentage: int
stackMetaLearnerType: 'string'
}
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
weightColumnName: 'string'
}
Для прогнозированияиспользуйте:
{
cvSplitColumnNames: [
'string'
]
featurizationSettings: {
blockedTransformers: [
'string'
]
columnNameAndTypes: {
{customized property}: 'string'
}
datasetLanguage: 'string'
enableDnnFeaturization: bool
mode: 'string'
transformerParams: {
{customized property}: [
{
fields: [
'string'
]
parameters: any(...)
}
]
}
}
forecastingSettings: {
countryOrRegionForHolidays: 'string'
cvStepSize: int
featureLags: 'string'
forecastHorizon: {
mode: 'string'
// For remaining properties, see ForecastHorizon objects
}
frequency: 'string'
seasonality: {
mode: 'string'
// For remaining properties, see Seasonality objects
}
shortSeriesHandlingConfig: 'string'
targetAggregateFunction: 'string'
targetLags: {
mode: 'string'
// For remaining properties, see TargetLags objects
}
targetRollingWindowSize: {
mode: 'string'
// For remaining properties, see TargetRollingWindowSize objects
}
timeColumnName: 'string'
timeSeriesIdColumnNames: [
'string'
]
useStl: 'string'
}
limitSettings: {
enableEarlyTermination: bool
exitScore: int
maxConcurrentTrials: int
maxCoresPerTrial: int
maxTrials: int
timeout: 'string'
trialTimeout: 'string'
}
nCrossValidations: {
mode: 'string'
// For remaining properties, see NCrossValidations objects
}
primaryMetric: 'string'
taskType: 'Forecasting'
testData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
testDataSize: int
trainingSettings: {
allowedTrainingAlgorithms: [
'string'
]
blockedTrainingAlgorithms: [
'string'
]
enableDnnTraining: bool
enableModelExplainability: bool
enableOnnxCompatibleModels: bool
enableStackEnsemble: bool
enableVoteEnsemble: bool
ensembleModelDownloadTimeout: 'string'
stackEnsembleSettings: {
stackMetaLearnerKWargs: any(...)
stackMetaLearnerTrainPercentage: int
stackMetaLearnerType: 'string'
}
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
weightColumnName: 'string'
}
Для ImageClassificationиспользуйте:
{
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
modelSettings: {
advancedSettings: 'string'
amsGradient: bool
augmentations: 'string'
beta1: int
beta2: int
checkpointFrequency: int
checkpointModel: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
checkpointRunId: 'string'
distributed: bool
earlyStopping: bool
earlyStoppingDelay: int
earlyStoppingPatience: int
enableOnnxNormalization: bool
evaluationFrequency: int
gradientAccumulationStep: int
layersToFreeze: int
learningRate: int
learningRateScheduler: 'string'
modelName: 'string'
momentum: int
nesterov: bool
numberOfEpochs: int
numberOfWorkers: int
optimizer: 'string'
randomSeed: int
stepLRGamma: int
stepLRStepSize: int
trainingBatchSize: int
trainingCropSize: int
validationBatchSize: int
validationCropSize: int
validationResizeSize: int
warmupCosineLRCycles: int
warmupCosineLRWarmupEpochs: int
weightDecay: int
weightedLoss: int
}
primaryMetric: 'string'
searchSpace: [
{
amsGradient: 'string'
augmentations: 'string'
beta1: 'string'
beta2: 'string'
distributed: 'string'
earlyStopping: 'string'
earlyStoppingDelay: 'string'
earlyStoppingPatience: 'string'
enableOnnxNormalization: 'string'
evaluationFrequency: 'string'
gradientAccumulationStep: 'string'
layersToFreeze: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
modelName: 'string'
momentum: 'string'
nesterov: 'string'
numberOfEpochs: 'string'
numberOfWorkers: 'string'
optimizer: 'string'
randomSeed: 'string'
stepLRGamma: 'string'
stepLRStepSize: 'string'
trainingBatchSize: 'string'
trainingCropSize: 'string'
validationBatchSize: 'string'
validationCropSize: 'string'
validationResizeSize: 'string'
warmupCosineLRCycles: 'string'
warmupCosineLRWarmupEpochs: 'string'
weightDecay: 'string'
weightedLoss: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
taskType: 'ImageClassification'
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
}
Для ImageClassificationMultilabelиспользуйте:
{
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
modelSettings: {
advancedSettings: 'string'
amsGradient: bool
augmentations: 'string'
beta1: int
beta2: int
checkpointFrequency: int
checkpointModel: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
checkpointRunId: 'string'
distributed: bool
earlyStopping: bool
earlyStoppingDelay: int
earlyStoppingPatience: int
enableOnnxNormalization: bool
evaluationFrequency: int
gradientAccumulationStep: int
layersToFreeze: int
learningRate: int
learningRateScheduler: 'string'
modelName: 'string'
momentum: int
nesterov: bool
numberOfEpochs: int
numberOfWorkers: int
optimizer: 'string'
randomSeed: int
stepLRGamma: int
stepLRStepSize: int
trainingBatchSize: int
trainingCropSize: int
validationBatchSize: int
validationCropSize: int
validationResizeSize: int
warmupCosineLRCycles: int
warmupCosineLRWarmupEpochs: int
weightDecay: int
weightedLoss: int
}
primaryMetric: 'string'
searchSpace: [
{
amsGradient: 'string'
augmentations: 'string'
beta1: 'string'
beta2: 'string'
distributed: 'string'
earlyStopping: 'string'
earlyStoppingDelay: 'string'
earlyStoppingPatience: 'string'
enableOnnxNormalization: 'string'
evaluationFrequency: 'string'
gradientAccumulationStep: 'string'
layersToFreeze: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
modelName: 'string'
momentum: 'string'
nesterov: 'string'
numberOfEpochs: 'string'
numberOfWorkers: 'string'
optimizer: 'string'
randomSeed: 'string'
stepLRGamma: 'string'
stepLRStepSize: 'string'
trainingBatchSize: 'string'
trainingCropSize: 'string'
validationBatchSize: 'string'
validationCropSize: 'string'
validationResizeSize: 'string'
warmupCosineLRCycles: 'string'
warmupCosineLRWarmupEpochs: 'string'
weightDecay: 'string'
weightedLoss: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
taskType: 'ImageClassificationMultilabel'
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
}
Для ImageInstanceSegmentationиспользуйте:
{
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
modelSettings: {
advancedSettings: 'string'
amsGradient: bool
augmentations: 'string'
beta1: int
beta2: int
boxDetectionsPerImage: int
boxScoreThreshold: int
checkpointFrequency: int
checkpointModel: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
checkpointRunId: 'string'
distributed: bool
earlyStopping: bool
earlyStoppingDelay: int
earlyStoppingPatience: int
enableOnnxNormalization: bool
evaluationFrequency: int
gradientAccumulationStep: int
imageSize: int
layersToFreeze: int
learningRate: int
learningRateScheduler: 'string'
maxSize: int
minSize: int
modelName: 'string'
modelSize: 'string'
momentum: int
multiScale: bool
nesterov: bool
nmsIouThreshold: int
numberOfEpochs: int
numberOfWorkers: int
optimizer: 'string'
randomSeed: int
stepLRGamma: int
stepLRStepSize: int
tileGridSize: 'string'
tileOverlapRatio: int
tilePredictionsNmsThreshold: int
trainingBatchSize: int
validationBatchSize: int
validationIouThreshold: int
validationMetricType: 'string'
warmupCosineLRCycles: int
warmupCosineLRWarmupEpochs: int
weightDecay: int
}
primaryMetric: 'string'
searchSpace: [
{
amsGradient: 'string'
augmentations: 'string'
beta1: 'string'
beta2: 'string'
boxDetectionsPerImage: 'string'
boxScoreThreshold: 'string'
distributed: 'string'
earlyStopping: 'string'
earlyStoppingDelay: 'string'
earlyStoppingPatience: 'string'
enableOnnxNormalization: 'string'
evaluationFrequency: 'string'
gradientAccumulationStep: 'string'
imageSize: 'string'
layersToFreeze: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
maxSize: 'string'
minSize: 'string'
modelName: 'string'
modelSize: 'string'
momentum: 'string'
multiScale: 'string'
nesterov: 'string'
nmsIouThreshold: 'string'
numberOfEpochs: 'string'
numberOfWorkers: 'string'
optimizer: 'string'
randomSeed: 'string'
stepLRGamma: 'string'
stepLRStepSize: 'string'
tileGridSize: 'string'
tileOverlapRatio: 'string'
tilePredictionsNmsThreshold: 'string'
trainingBatchSize: 'string'
validationBatchSize: 'string'
validationIouThreshold: 'string'
validationMetricType: 'string'
warmupCosineLRCycles: 'string'
warmupCosineLRWarmupEpochs: 'string'
weightDecay: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
taskType: 'ImageInstanceSegmentation'
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
}
Для ImageObjectDetectionиспользуйте:
{
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
modelSettings: {
advancedSettings: 'string'
amsGradient: bool
augmentations: 'string'
beta1: int
beta2: int
boxDetectionsPerImage: int
boxScoreThreshold: int
checkpointFrequency: int
checkpointModel: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
checkpointRunId: 'string'
distributed: bool
earlyStopping: bool
earlyStoppingDelay: int
earlyStoppingPatience: int
enableOnnxNormalization: bool
evaluationFrequency: int
gradientAccumulationStep: int
imageSize: int
layersToFreeze: int
learningRate: int
learningRateScheduler: 'string'
maxSize: int
minSize: int
modelName: 'string'
modelSize: 'string'
momentum: int
multiScale: bool
nesterov: bool
nmsIouThreshold: int
numberOfEpochs: int
numberOfWorkers: int
optimizer: 'string'
randomSeed: int
stepLRGamma: int
stepLRStepSize: int
tileGridSize: 'string'
tileOverlapRatio: int
tilePredictionsNmsThreshold: int
trainingBatchSize: int
validationBatchSize: int
validationIouThreshold: int
validationMetricType: 'string'
warmupCosineLRCycles: int
warmupCosineLRWarmupEpochs: int
weightDecay: int
}
primaryMetric: 'string'
searchSpace: [
{
amsGradient: 'string'
augmentations: 'string'
beta1: 'string'
beta2: 'string'
boxDetectionsPerImage: 'string'
boxScoreThreshold: 'string'
distributed: 'string'
earlyStopping: 'string'
earlyStoppingDelay: 'string'
earlyStoppingPatience: 'string'
enableOnnxNormalization: 'string'
evaluationFrequency: 'string'
gradientAccumulationStep: 'string'
imageSize: 'string'
layersToFreeze: 'string'
learningRate: 'string'
learningRateScheduler: 'string'
maxSize: 'string'
minSize: 'string'
modelName: 'string'
modelSize: 'string'
momentum: 'string'
multiScale: 'string'
nesterov: 'string'
nmsIouThreshold: 'string'
numberOfEpochs: 'string'
numberOfWorkers: 'string'
optimizer: 'string'
randomSeed: 'string'
stepLRGamma: 'string'
stepLRStepSize: 'string'
tileGridSize: 'string'
tileOverlapRatio: 'string'
tilePredictionsNmsThreshold: 'string'
trainingBatchSize: 'string'
validationBatchSize: 'string'
validationIouThreshold: 'string'
validationMetricType: 'string'
warmupCosineLRCycles: 'string'
warmupCosineLRWarmupEpochs: 'string'
weightDecay: 'string'
}
]
sweepSettings: {
earlyTermination: {
delayEvaluation: int
evaluationInterval: int
policyType: 'string'
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm: 'string'
}
taskType: 'ImageObjectDetection'
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
}
Для регрессиииспользуйте:
{
cvSplitColumnNames: [
'string'
]
featurizationSettings: {
blockedTransformers: [
'string'
]
columnNameAndTypes: {
{customized property}: 'string'
}
datasetLanguage: 'string'
enableDnnFeaturization: bool
mode: 'string'
transformerParams: {
{customized property}: [
{
fields: [
'string'
]
parameters: any(...)
}
]
}
}
limitSettings: {
enableEarlyTermination: bool
exitScore: int
maxConcurrentTrials: int
maxCoresPerTrial: int
maxTrials: int
timeout: 'string'
trialTimeout: 'string'
}
nCrossValidations: {
mode: 'string'
// For remaining properties, see NCrossValidations objects
}
primaryMetric: 'string'
taskType: 'Regression'
testData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
testDataSize: int
trainingSettings: {
allowedTrainingAlgorithms: [
'string'
]
blockedTrainingAlgorithms: [
'string'
]
enableDnnTraining: bool
enableModelExplainability: bool
enableOnnxCompatibleModels: bool
enableStackEnsemble: bool
enableVoteEnsemble: bool
ensembleModelDownloadTimeout: 'string'
stackEnsembleSettings: {
stackMetaLearnerKWargs: any(...)
stackMetaLearnerTrainPercentage: int
stackMetaLearnerType: 'string'
}
}
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
validationDataSize: int
weightColumnName: 'string'
}
Для TextClassificationиспользуйте:
{
featurizationSettings: {
datasetLanguage: 'string'
}
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
primaryMetric: 'string'
taskType: 'TextClassification'
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
}
Для TextClassificationMultilabelиспользуйте:
{
featurizationSettings: {
datasetLanguage: 'string'
}
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
taskType: 'TextClassificationMultilabel'
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
}
Для TextNERиспользуйте:
{
featurizationSettings: {
datasetLanguage: 'string'
}
limitSettings: {
maxConcurrentTrials: int
maxTrials: int
timeout: 'string'
}
taskType: 'TextNER'
validationData: {
description: 'string'
jobInputType: 'string'
mode: 'string'
uri: 'string'
}
}
Объекты NCrossValidations
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
mode: 'Auto'
}
Для пользовательских
{
mode: 'Custom'
value: int
}
Объекты DistributionConfiguration
Задайте свойство
Для Mpiиспользуйте:
{
distributionType: 'Mpi'
processCountPerInstance: int
}
Для PyTorchиспользуйте:
{
distributionType: 'PyTorch'
processCountPerInstance: int
}
Для TensorFlowиспользуйте:
{
distributionType: 'TensorFlow'
parameterServerCount: int
workerCount: int
}
Объекты IdentityConfiguration
Задайте свойство identityType, чтобы указать тип объекта.
Для AMLTokenиспользуйте:
{
identityType: 'AMLToken'
}
Для управляемых
{
clientId: 'string'
identityType: 'Managed'
objectId: 'string'
resourceId: 'string'
}
Для UserIdentityиспользуйте:
{
identityType: 'UserIdentity'
}
Объекты nodes
Задайте свойство nodesValueType, чтобы указать тип объекта.
Для всехиспользуйте:
{
nodesValueType: 'All'
}
Объекты TriggerBase
Задайте свойство triggerType, чтобы указать тип объекта.
Для Cronиспользуйте:
{
expression: 'string'
triggerType: 'Cron'
}
Для повторенияиспользуйте:
{
frequency: 'string'
interval: int
schedule: {
hours: [
int
]
minutes: [
int
]
monthDays: [
int
]
weekDays: [
'string'
]
}
triggerType: 'Recurrence'
}
Объекты JobInput
Задайте свойство jobInputType, чтобы указать тип объекта.
Для custom_modelиспользуйте:
{
jobInputType: 'custom_model'
mode: 'string'
uri: 'string'
}
Для литералаиспользуйте:
{
jobInputType: 'literal'
value: 'string'
}
Для mlflow_modelиспользуйте:
{
jobInputType: 'mlflow_model'
mode: 'string'
uri: 'string'
}
Для mltableиспользуйте:
{
jobInputType: 'mltable'
mode: 'string'
uri: 'string'
}
Для triton_modelиспользуйте:
{
jobInputType: 'triton_model'
mode: 'string'
uri: 'string'
}
Для uri_fileиспользуйте:
{
jobInputType: 'uri_file'
mode: 'string'
uri: 'string'
}
Для uri_folderиспользуйте:
{
jobInputType: 'uri_folder'
mode: 'string'
uri: 'string'
}
Объекты TargetLags
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
mode: 'Auto'
}
Для пользовательских
{
mode: 'Custom'
values: [
int
]
}
Значения свойств
AllNodes
Имя | Описание | Ценность |
---|---|---|
nodesValueType | [Обязательный] Тип значения Nodes | "Все" (обязательно) |
AmlToken
Имя | Описание | Ценность |
---|---|---|
identityType | [Обязательный] Указывает тип платформы удостоверений. | AMLToken (обязательно) |
AutoForecastHorizon
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Задайте режим выбора значения горизонта прогнозирования. | "Авто" (обязательно) |
AutoMLJob
Имя | Описание | Ценность |
---|---|---|
environmentId | Идентификатор ресурса ARM спецификации среды для задания. Это необязательное значение для предоставления, если оно не указано, AutoML по умолчанию используется для рабочей версии курируемой среды AutoML при выполнении задания. |
струна |
environmentVariables | Переменные среды, включенные в задание. | AutoMLJobEnvironmentVariables |
jobType | [Обязательный] Указывает тип задания. | AutoML (обязательно) |
Выходы | Сопоставление привязок выходных данных, используемых в задании. | AutoMLJobOutputs |
ресурсы | Конфигурация вычислительных ресурсов для задания. | JobResourceConfiguration |
taskDetails | [Обязательный] Это сценарий, который может быть одним из таблиц/ NLP/Image | AutoMLVertical (обязательно) |
AutoMLJobEnvironmentVariables
Имя | Описание | Ценность |
---|
AutoMLJobOutputs
Имя | Описание | Ценность |
---|
AutoMLVertical
Имя | Описание | Ценность |
---|---|---|
logVerbosity | Подробность журнала для задания. | "Критический" "Отладка" "Ошибка" "Info" NotSet Предупреждение |
targetColumnName | Имя целевого столбца: это столбец прогнозируемых значений. Также называется именем столбца метки в контексте задач классификации. |
струна |
taskType | Установите значение "Классификация" для классификации типов. Установите значение "Прогнозирование" для типа прогнозирования. Установите значение ImageClassification для типа ImageClassification. Установите значение ImageClassificationMultilabel для типа ImageClassificationMultilabel. Установите значение ImageInstanceSegmentation для типа ImageInstanceSegmentation. Установите значение ImageObjectDetection для типа ImageObjectDetection. Установите значение "Регрессия" для регрессии типа. Установите значение TextClassification для типа TextClassification. Установите значение TextClassificationMultilabel для типа TextClassificationMultilabel. Установите значение TextNER для типа TextNer. | "Классификация" "Прогнозирование" ImageClassification ImageClassificationMultilabel "ImageInstanceSegmentation" ImageObjectDetection Регрессия TextClassification TextClassificationMultilabel TextNER (обязательно) |
trainingData | [Обязательный] Входные данные обучения. | MLTableJobInput (обязательно) |
AutoNCrossValidations
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим определения проверок N-Cross. | "Авто" (обязательно) |
Автосесональность
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим сезонности. | "Авто" (обязательно) |
AutoTargetLags
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Настройка режима задержки целевых объектов — автоматическое или настраиваемое | "Авто" (обязательно) |
AutoTargetRollingWindowSize
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим обнаружения TargetRollingWindowSiz. | "Авто" (обязательно) |
BanditPolicy
Имя | Описание | Ценность |
---|---|---|
policyType | [Обязательный] Имя конфигурации политики | "Банда" (обязательно) |
slackAmount | Абсолютное расстояние, допустимое от оптимального выполнения. | int |
slackFactor | Соотношение допустимого расстояния от оптимального выполнения. | int |
BayesianSamplingAlgorithm
Имя | Описание | Ценность |
---|---|---|
выборкаAlgorithmType | [Обязательный] Алгоритм, используемый для создания значений гиперпараметров, а также свойств конфигурации | Байесян (обязательный) |
Классификация
Имя | Описание | Ценность |
---|---|---|
cvSplitColumnNames | Столбцы, используемые для данных CVSplit. | string[] |
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | TableVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Количество сверток перекрестной проверки, применяемых к набору данных для обучения Если набор данных проверки не указан. |
NCrossValidations |
positiveLabel | Положительная метка для вычисления двоичных метрик. | струна |
primaryMetric | Первичная метрика для задачи. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
taskType | [Обязательный] Тип задачи для AutoMLJob. | "Классификация" (обязательно) |
testData | Проверка входных данных. | MLTableJobInput |
testDataSize | Доля тестового набора данных, который необходимо отложить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
trainingSettings | Входные данные для этапа обучения для задания AutoML. | КлассификацияTrainingSettings |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
weightColumnName | Имя столбца веса образца. Автоматизированное машинное обучение поддерживает взвешанный столбец в качестве входных данных, что приводит к тому, что строки в данных будут взвешированы вверх или вниз. | струна |
КлассификацияTrainingSettings
Имя | Описание | Ценность |
---|---|---|
allowedTrainingAlgorithms | Разрешенные модели для задачи классификации. | Массив строк, содержащий любой из: 'БернуллиNaiveBayes' "DecisionTree" "ExtremeRandomTrees" 'GradientBoosting' KNN LightGBM "LinearSVM" "LogisticRegression" MultinomialNaiveBayes "RandomForest" "ДИНАМ" SVM "XGBoostClassifier" |
blockedTrainingAlgorithms | Заблокированные модели для задачи классификации. | Массив строк, содержащий любой из: 'БернуллиNaiveBayes' "DecisionTree" "ExtremeRandomTrees" 'GradientBoosting' KNN LightGBM "LinearSVM" "LogisticRegression" MultinomialNaiveBayes "RandomForest" "ДИНАМ" SVM "XGBoostClassifier" |
enableDnnTraining | Включите рекомендацию моделей DNN. | bool |
enableModelExplainability | Пометка для включения объяснимости для оптимальной модели. | bool |
enableOnnxCompatibleModels | Флаг включения совместимых моделей onnx. | bool |
enableStackEnsemble | Включите запуск ансамбля стека. | bool |
enableVoteEnsemble | Включите запуск ансамбля голосования. | bool |
ensembleModelDownloadTimeout | Во время создания модели VotingEnsemble и StackEnsemble скачиваются несколько встроенных моделей из предыдущих дочерних запусков. Настройте этот параметр с более высоким значением, чем 300 с, если требуется больше времени. |
струна |
stackEnsembleSettings | Параметры ансамбля стека для выполнения ансамбля стека. | StackEnsembleSettings |
ColumnTransformer
Имя | Описание | Ценность |
---|---|---|
Поля | Поля для применения логики преобразователя. | string[] |
Параметры | Различные свойства, передаваемые преобразователю. Ожидается, что входные данные — это словарь пар "ключ", "значение" в формате JSON. |
любой |
CommandJob
Имя | Описание | Ценность |
---|---|---|
codeId | Идентификатор ресурса ARM ресурса ресурса кода. | струна |
команда | [Обязательный] Команда, выполняемая при запуске задания. Например. "Python train.py" | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
распределение | Конфигурация распределения задания. Если задано, это должен быть один из Mpi, Tensorflow, PyTorch или NULL. | distributionConfiguration |
environmentId | [Обязательный] Идентификатор ресурса ARM спецификации среды для задания. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
environmentVariables | Переменные среды, включенные в задание. | CommandJobEnvironmentVariables |
Входы | Сопоставление входных привязок данных, используемых в задании. | CommandJobInputs |
jobType | [Обязательный] Указывает тип задания. | "Command" (обязательный) |
Ограничения | Ограничение задания команд. | CommandJobLimits |
Выходы | Сопоставление привязок выходных данных, используемых в задании. | CommandJobOutputs |
ресурсы | Конфигурация вычислительных ресурсов для задания. | JobResourceConfiguration |
CommandJobEnvironmentVariables
Имя | Описание | Ценность |
---|
CommandJobInputs
Имя | Описание | Ценность |
---|
CommandJobLimits
Имя | Описание | Ценность |
---|---|---|
jobLimitsType | [Обязательный] Тип JobLimit. | "Command" "Очистка" (обязательно) |
Времени ожидания | Максимальная длительность выполнения в формате ISO 8601, после которой задание будет отменено. Поддерживается только длительность с точностью до секунд. | струна |
CommandJobOutputs
Имя | Описание | Ценность |
---|
CronTrigger
Имя | Описание | Ценность |
---|---|---|
выражение | [Обязательный] Указывает выражение крона расписания. Выражение должно соответствовать формату NCronTab. |
струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
triggerType | [Обязательный] | "Cron" (обязательно) |
CustomForecastHorizon
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Задайте режим выбора значения горизонта прогнозирования. | "Custom" (обязательный) |
ценность | [Обязательный] Прогноз значения горизонта. | int (обязательно) |
CustomModelJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "custom_model" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
CustomModelJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "custom_model" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
CustomNCrossValidations
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим определения проверок N-Cross. | "Custom" (обязательный) |
ценность | [Обязательный] Значение N-Cross validations. | int (обязательно) |
CustomSeasonality
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим сезонности. | "Custom" (обязательный) |
ценность | [Обязательный] Значение сезонности. | int (обязательно) |
CustomTargetLags
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Настройка режима задержки целевых объектов — автоматическое или настраиваемое | "Custom" (обязательный) |
Значения | [Обязательный] Задайте значения задержки целевых значений. | int[] (обязательно) |
CustomTargetRollingWindowSize
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим обнаружения TargetRollingWindowSiz. | "Custom" (обязательный) |
ценность | [Обязательный] Значение TargetRollingWindowSize. | int (обязательно) |
DistributionConfiguration
Имя | Описание | Ценность |
---|---|---|
distributionType | Установите значение Mpi для типа Mpi. Установите значение PyTorch для типа PyTorch. Установите значение TensorFlow для типа TensorFlow. | "Mpi" "PyTorch" TensorFlow (обязательный) |
EarlyTerminationPolicy
Имя | Описание | Ценность |
---|---|---|
delayEvaluation | Количество интервалов, с помощью которых необходимо отложить первую оценку. | int |
evaluationInterval | Интервал (количество запусков) между оценками политики. | int |
policyType | Установите значение "Bandit" для типа BanditPolicy. Установите значение MedianStopping для типа MedianStoppingPolicy. Задайте значение TruncationSelection для типа TruncationSelectionPolicy. | "Бандит" MedianStopping УсечениеSelection (обязательно) |
EndpointScheduleAction
Имя | Описание | Ценность |
---|---|---|
actionType | [Обязательный] Указывает тип действия расписания | InvokeBatchEndpoint (обязательно) |
endpointInvocationDefinition | [Обязательный] Определяет сведения о определении действия расписания. <см. href="TBD" /> |
любой (обязательный) |
ПрогнозHorizon
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoForecastHorizon. Установите значение Custom для типа CustomForecastHorizon. | "Авто" "Custom" (обязательный) |
Прогнозирование
Имя | Описание | Ценность |
---|---|---|
cvSplitColumnNames | Столбцы, используемые для данных CVSplit. | string[] |
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | TableVerticalFeaturizationSettings |
forecastingSettings | Прогнозирование определенных входных данных задачи. | ForecastingSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Количество сверток перекрестной проверки, применяемых к набору данных для обучения Если набор данных проверки не указан. |
NCrossValidations |
primaryMetric | Основная метрика для задачи прогнозирования. | "NormalizedMeanAbsoluteError" "NormalizedRootMeanSquaredError" "R2Score" 'SpearmanCorrelation' |
taskType | [Обязательный] Тип задачи для AutoMLJob. | "Прогнозирование" (обязательно) |
testData | Проверка входных данных. | MLTableJobInput |
testDataSize | Доля тестового набора данных, который необходимо отложить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
trainingSettings | Входные данные для этапа обучения для задания AutoML. | ПрогнозированиеTrainingSettings |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
weightColumnName | Имя столбца веса образца. Автоматизированное машинное обучение поддерживает взвешанный столбец в качестве входных данных, что приводит к тому, что строки в данных будут взвешированы вверх или вниз. | струна |
ПрогнозированиеSettings
Имя | Описание | Ценность |
---|---|---|
countryOrRegionForHolidays | Страна или регион для праздников для задач прогнозирования. Это должны быть коды стран и регионов ISO 3166, например "US" или "GB". |
струна |
cvStepSize | Число периодов между временем начала одного свертывания CV и следующего свертывания. Для Например, если CVStepSize = 3 для ежедневных данных, время источника для каждого свертывания будеттри дня в стороне. |
int |
featureLags | Флаг для создания задержек для числовых функций с параметром auto или NULL. | "Авто" "Нет" |
прогнозHorizon | Требуемый максимальный горизонт прогнозирования в единицах частоты временных рядов. | ForecastHorizon |
частота | При прогнозировании этот параметр представляет период, с которым нужно, например ежедневно, еженедельно, ежегодно и т. д. Частота прогноза — это частота набора данных по умолчанию. | струна |
Сезонность | Задайте сезонность временных рядов в качестве целого числа, кратного частоты ряда. Если для сезонности задано значение auto, он будет выводиться. |
сезонности |
shortSeriesHandlingConfig | Параметр, определяющий, как autoML должен обрабатывать короткие временные ряды. | "Авто" "Drop" "Нет" "Pad" |
targetAggregateFunction | Функция, используемая для агрегирования целевого столбца временных рядов для соответствия заданной пользователем частоте. Если параметр TargetAggregateFunction задан, т. е. не "Нет", но параметр freq не задан, возникает ошибка. Возможные функции агрегирования целевых значений: sum, max, min и среднее. |
"Max" "Среднее" "Min" "Нет" "Sum" |
targetLags | Число прошлых периодов задержки от целевого столбца. | TargetLags |
targetRollingWindowSize | Количество прошлых периодов, используемых для создания скользящего среднего окна целевого столбца. | TargetRollingWindowSize |
timeColumnName | Имя столбца времени. Этот параметр требуется при прогнозировании для указания столбца datetime в входных данных, используемых для создания временных рядов и вывода его частоты. | струна |
timeSeriesIdColumnNames | Имена столбцов, используемых для группировки таймерий. Его можно использовать для создания нескольких рядов. Если набор данных не определен, предполагается, что набор данных является одним временным рядом. Этот параметр используется с прогнозированием типа задачи. |
string[] |
useStl | Настройте декомпозицию STL целевого столбца временных рядов. | "Нет" "Сезон" 'SeasonTrend' |
ПрогнозированиеTrainingSettings
Имя | Описание | Ценность |
---|---|---|
allowedTrainingAlgorithms | Разрешенные модели для задачи прогнозирования. | Массив строк, содержащий любой из: 'Arimax' AutoArima "Среднее" "DecisionTree" ElasticNet "ЭкспоненциальнаяSmoothing" "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "Наивный" "Пророк" "RandomForest" "СезоннаяAverage" "СезоннаяNaive" "ДИНАМ" 'TCNForecaster' "XGBoostRegressor" |
blockedTrainingAlgorithms | Заблокированные модели для задачи прогнозирования. | Массив строк, содержащий любой из: 'Arimax' AutoArima "Среднее" "DecisionTree" ElasticNet "ЭкспоненциальнаяSmoothing" "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "Наивный" "Пророк" "RandomForest" "СезоннаяAverage" "СезоннаяNaive" "ДИНАМ" 'TCNForecaster' "XGBoostRegressor" |
enableDnnTraining | Включите рекомендацию моделей DNN. | bool |
enableModelExplainability | Пометка для включения объяснимости для оптимальной модели. | bool |
enableOnnxCompatibleModels | Флаг включения совместимых моделей onnx. | bool |
enableStackEnsemble | Включите запуск ансамбля стека. | bool |
enableVoteEnsemble | Включите запуск ансамбля голосования. | bool |
ensembleModelDownloadTimeout | Во время создания модели VotingEnsemble и StackEnsemble скачиваются несколько встроенных моделей из предыдущих дочерних запусков. Настройте этот параметр с более высоким значением, чем 300 с, если требуется больше времени. |
струна |
stackEnsembleSettings | Параметры ансамбля стека для выполнения ансамбля стека. | StackEnsembleSettings |
GridSamplingAlgorithm
Имя | Описание | Ценность |
---|---|---|
выборкаAlgorithmType | [Обязательный] Алгоритм, используемый для создания значений гиперпараметров, а также свойств конфигурации | Grid (обязательно) |
IdentityConfiguration
Имя | Описание | Ценность |
---|---|---|
identityType | Установите значение AMLToken для типа AmlToken. Установите значение Managed для типа ManagedIdentity. Установите значение UserIdentity для типа UserIdentity. | AMLToken "Managed" (Управляемый) UserIdentity (обязательно) |
ImageClassification
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsClassification |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageClassification (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageClassificationMultilabel
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsClassification |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "IOU" "NormMacroRecall" "PrecisionScoreWeighted" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageClassificationMultilabel (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageInstanceSegmentation
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsObjectDetection |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "MeanAveragePrecision" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageInstanceSegmentation (обязательно) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageLimitSettings
Имя | Описание | Ценность |
---|---|---|
maxConcurrentTrials | Максимальное число параллельных итераций AutoML. | int |
maxTrials | Максимальное число итераций AutoML. | int |
Времени ожидания | Время ожидания задания AutoML. | струна |
ImageModelDistributionSettingsClassification
Имя | Описание | Ценность |
---|---|---|
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | струна |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
распределённый | Следует ли использовать обучение распространителя. | струна |
earlyStopping | Включите логику раннего остановки во время обучения. | струна |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
струна |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
струна |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | струна |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | струна |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
струна |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
струна |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | струна |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | струна |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | струна |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | струна |
оптимизатор | Тип оптимизатора. Должно быть либо "хем", "адам", либо "адам". | струна |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | струна |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | струна |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | струна |
trainingCropSize | Размер обрезки изображения, входной в нейронную сеть для обучающего набора данных. Должно быть положительным целым числом. | струна |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | струна |
validationCropSize | Размер обрезки изображения, входной в нейронную сеть для набора данных проверки. Должно быть положительным целым числом. | струна |
validationResizeSize | Размер изображения, в который необходимо изменить размер перед обрезкой для набора данных проверки. Должно быть положительным целым числом. | струна |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | струна |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | струна |
весеedLoss | Весовая потеря. Допустимые значения — 0 без потери веса. 1 для взвешаемой потери с sqrt. (class_weights). 2 для взвешаемой потери с class_weights. Должно быть 0 или 1 или 2. |
струна |
ImageModelDistributionSettingsObjectDetection
Имя | Описание | Ценность |
---|---|---|
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | струна |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
boxDetectionsPerImage | Максимальное количество обнаружений на изображение для всех классов. Должно быть положительным целым числом. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
boxScoreThreshold | Во время вывода возвращаются только предложения с оценкой классификации больше, чем BoxScoreThreshold. Должен быть плавающей запятой в диапазоне[0, 1]. |
струна |
распределённый | Следует ли использовать обучение распространителя. | струна |
earlyStopping | Включите логику раннего остановки во время обучения. | струна |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
струна |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
струна |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | струна |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | струна |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
струна |
imageSize | Размер изображения для обучения и проверки. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
струна |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
струна |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | струна |
maxSize | Максимальный размер изображения для перемасштабирования перед его добавлением в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
minSize | Минимальный размер изображения, который необходимо перемасштабировать, прежде чем передавать его в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
modelSize | Размер модели. Должен быть "маленький", "средний", "большой" или "xlarge". Примечание. Учебный запуск может попасть в OOM CUDA, если размер модели слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
струна |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
MultiScale | Включите многомасштабное изображение, изменив размер изображения по +/-50%. Примечание. Учебный запуск может попасть в OOM CUDA, если недостаточно памяти GPU. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
струна |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | струна |
nmsIouThreshold | Пороговое значение ввода-вывода, используемое во время вывода в процессе последующей обработки NMS. Должен быть плавать в диапазоне [0, 1]. | струна |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | струна |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | струна |
оптимизатор | Тип оптимизатора. Должно быть либо "хем", "адам", либо "адам". | струна |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | струна |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | струна |
tileGridSize | Размер сетки, используемый для размещения каждого изображения. Примечание. TileGridSize не должно быть Нет, чтобы включить логику обнаружения небольших объектов. Строка, содержащая два целых числа в формате mxn. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
tileOverlapRatio | Коэффициент перекрытия между смежными плитками в каждом измерении. Должен быть плавать в диапазоне [0, 1). Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
tilePredictionsNmsThreshold | Пороговое значение IOU для выполнения NMS при слиянии прогнозов из плиток и изображений. Используется в проверке или выводе. Должен быть плавать в диапазоне [0, 1]. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. NMS: не максимальное подавление |
струна |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | струна |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | струна |
validationIouThreshold | Пороговое значение IOU для использования при вычислении метрики проверки. Должен быть плавать в диапазоне [0, 1]. | струна |
validationMetricType | Метод вычисления метрик, используемый для метрик проверки. Должно быть "none", "coco", "voc" или "coco_voc". | струна |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | струна |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | струна |
ImageModelSettingsClassification
Имя | Описание | Ценность |
---|---|---|
advancedSettings | Параметры для расширенных сценариев. | струна |
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | bool |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
контрольная точкаFrequency | Частота хранения контрольных точек модели. Должно быть положительным целым числом. | int |
контрольная точкаModel | Предварительно обученная модель контрольной точки для добавочного обучения. | MLFlowModelJobInput |
контрольная точкаRunId | Идентификатор предыдущего запуска с предварительно обученной контрольной точкой для добавочного обучения. | струна |
распределённый | Следует ли использовать распределенное обучение. | bool |
earlyStopping | Включите логику раннего остановки во время обучения. | bool |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
int |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
int |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | bool |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | int |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
int |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
int |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | int |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | "Нет" Шаг "WarmupCosine" |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | bool |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | int |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | int |
оптимизатор | Тип оптимизатора. | "Адам" "Адамв" "Нет" "Хем" |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | int |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | int |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | int |
trainingCropSize | Размер обрезки изображения, входной в нейронную сеть для обучающего набора данных. Должно быть положительным целым числом. | int |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | int |
validationCropSize | Размер обрезки изображения, входной в нейронную сеть для набора данных проверки. Должно быть положительным целым числом. | int |
validationResizeSize | Размер изображения, в который необходимо изменить размер перед обрезкой для набора данных проверки. Должно быть положительным целым числом. | int |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | int |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | int |
весеedLoss | Весовая потеря. Допустимые значения — 0 без потери веса. 1 для взвешаемой потери с sqrt. (class_weights). 2 для взвешаемой потери с class_weights. Должно быть 0 или 1 или 2. |
int |
ImageModelSettingsObjectDetection
Имя | Описание | Ценность |
---|---|---|
advancedSettings | Параметры для расширенных сценариев. | струна |
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | bool |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
boxDetectionsPerImage | Максимальное количество обнаружений на изображение для всех классов. Должно быть положительным целым числом. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
boxScoreThreshold | Во время вывода возвращаются только предложения с оценкой классификации больше, чем BoxScoreThreshold. Должен быть плавающей запятой в диапазоне[0, 1]. |
int |
контрольная точкаFrequency | Частота хранения контрольных точек модели. Должно быть положительным целым числом. | int |
контрольная точкаModel | Предварительно обученная модель контрольной точки для добавочного обучения. | MLFlowModelJobInput |
контрольная точкаRunId | Идентификатор предыдущего запуска с предварительно обученной контрольной точкой для добавочного обучения. | струна |
распределённый | Следует ли использовать распределенное обучение. | bool |
earlyStopping | Включите логику раннего остановки во время обучения. | bool |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
int |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
int |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | bool |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | int |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
int |
imageSize | Размер изображения для обучения и проверки. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
int |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
int |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | int |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | "Нет" Шаг "WarmupCosine" |
maxSize | Максимальный размер изображения для перемасштабирования перед его добавлением в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
minSize | Минимальный размер изображения, который необходимо перемасштабировать, прежде чем передавать его в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
modelSize | Размер модели. Должен быть "маленький", "средний", "большой" или "xlarge". Примечание. Учебный запуск может попасть в OOM CUDA, если размер модели слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
'ExtraLarge' "Большой" "Средний" "Нет" "Маленький" |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
MultiScale | Включите многомасштабное изображение, изменив размер изображения по +/-50%. Примечание. Учебный запуск может попасть в OOM CUDA, если недостаточно памяти GPU. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
bool |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | bool |
nmsIouThreshold | Пороговое значение ввода-вывода, используемое во время вывода в процессе последующей обработки NMS. Должен быть плавающей запятой в диапазоне [0, 1]. | int |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | int |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | int |
оптимизатор | Тип оптимизатора. | "Адам" "Адамв" "Нет" "Хем" |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | int |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | int |
tileGridSize | Размер сетки, используемый для размещения каждого изображения. Примечание. TileGridSize не должно быть Нет, чтобы включить логику обнаружения небольших объектов. Строка, содержащая два целых числа в формате mxn. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
tileOverlapRatio | Коэффициент перекрытия между смежными плитками в каждом измерении. Должен быть плавать в диапазоне [0, 1). Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
tilePredictionsNmsThreshold | Пороговое значение IOU для выполнения NMS при слиянии прогнозов из плиток и изображений. Используется в проверке или выводе. Должен быть плавать в диапазоне [0, 1]. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | int |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | int |
validationIouThreshold | Пороговое значение IOU для использования при вычислении метрики проверки. Должен быть плавать в диапазоне [0, 1]. | int |
validationMetricType | Метод вычисления метрик, используемый для метрик проверки. | "Коко" 'CocoVoc' "Нет" "Voc" |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | int |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | int |
ImageObjectDetection
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsObjectDetection |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "MeanAveragePrecision" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageObjectDetection (обязательно) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageSweepSettings
Имя | Описание | Ценность |
---|---|---|
ранняятерминация | Тип политики раннего завершения. | EarlyTerminationPolicy |
выборкаAlgorithm | [Обязательный] Тип алгоритмов выборки гиперпараметров. | "Байезиан" "Сетка" "Случайный" (обязательный) |
JobBaseProperties
Имя | Описание | Ценность |
---|---|---|
componentId | Идентификатор ресурса ARM ресурса компонента. | струна |
computeId | Идентификатор ресурса ARM вычислительного ресурса. | струна |
описание | Текст описания ресурса. | струна |
displayName | Отображаемое имя задания. | струна |
experimentName | Имя эксперимента, к которому принадлежит задание. Если задание не задано, задание помещается в эксперимент по умолчанию. | струна |
тождество | Конфигурация удостоверения. Если задано, это должен быть один из AmlToken, ManagedIdentity, UserIdentity или NULL. По умолчанию AmlToken имеет значение NULL. |
IdentityConfiguration |
isArchived | Архивируется ли ресурс? | bool |
jobType | Установите значение AutoML для типа AutoMLJob. Задайте для типа command CommandJob. Установите значение Pipeline для типа PipelineJob. Установите значение "Sweep" для типа SweepJob. | AutoML "Command" Конвейер "Очистка" (обязательно) |
свойства | Словарь свойств ресурса. | ResourceBaseProperties |
Услуги | Список заданий. Для локальных заданий конечная точка задания будет иметь значение конечной точки FileStreamObject. |
JobBaseServices |
Теги | Словарь тегов. Теги можно добавлять, удалять и обновлять. | ResourceBaseTags |
JobBaseServices
Имя | Описание | Ценность |
---|
JobInput
Имя | Описание | Ценность |
---|---|---|
описание | Описание входных данных. | струна |
jobInputType | Установите значение "custom_model" для типа CustomModelJobInput. Задайте значение "литерал" для типа LiteralJobInput. Установите значение "mlflow_model" для типа MLFlowModelJobInput. Установите значение mltable для типа MLTableJobInput. Установите значение "triton_model" для типа TritonModelJobInput. Установите значение "uri_file" для типа UriFileJobInput. Установите значение "uri_folder" для типа UriFolderJobInput. | "custom_model" "литерал" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
JobOutput
Имя | Описание | Ценность |
---|---|---|
описание | Описание выходных данных. | струна |
jobOutputType | Установите значение "custom_model" для типа CustomModelJobOutput. Установите значение "mlflow_model" для типа MLFlowModelJobOutput. Установите значение mltable для типа MLTableJobOutput. Установите значение "triton_model" для типа TritonModelJobOutput. Установите значение "uri_file" для типа UriFileJobOutput. Установите значение "uri_folder" для типа UriFolderJobOutput. | "custom_model" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
JobResourceConfiguration
Имя | Описание | Ценность |
---|---|---|
dockerArgs | Дополнительные аргументы для передачи команде запуска Docker. Это переопределит все параметры, которые уже были заданы системой или в этом разделе. Этот параметр поддерживается только для типов вычислений Машинного обучения Azure. | струна |
instanceCount | Необязательное количество экземпляров или узлов, используемых целевым объектом вычислений. | int |
instanceType | Необязательный тип виртуальной машины, используемой в качестве поддержки целевого объекта вычислений. | струна |
свойства | Дополнительные контейнеры свойств. | ResourceConfigurationProperties |
shmSize | Размер общего блока памяти контейнера Docker. Это должно быть в формате (число)(единица), где число должно быть больше 0, а единица может быть одной из b(байтов), k(килобайтов), m(мегабайт) или g(g(gigabytes). | струна Ограничения целостности: Pattern = \d+[bBkKmMgG] |
JobScheduleAction
Имя | Описание | Ценность |
---|---|---|
actionType | [Обязательный] Указывает тип действия расписания | CreateJob (обязательный) |
jobDefinition | [Обязательный] Определяет сведения о определении действия расписания. | JobBaseProperties (обязательно) |
JobService
Имя | Описание | Ценность |
---|---|---|
конечная точка | URL-адрес конечной точки. | струна |
jobServiceType | Тип конечной точки. | струна |
Узлов | Узлы, на которые пользователь хочет запустить службу. Если узлы не заданы или заданы значение NULL, служба будет запущена только на узле лидера. |
узлов |
порт | Порт для конечной точки. | int |
свойства | Дополнительные свойства, заданные в конечной точке. | JobServiceProperties |
JobServiceProperties
Имя | Описание | Ценность |
---|
ЛитералJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "литерал" (обязательный) |
ценность | [Обязательный] Литеральное значение для входных данных. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
ManagedIdentity
Имя | Описание | Ценность |
---|---|---|
clientId | Указывает назначаемое пользователем удостоверение по идентификатору клиента. Для назначаемого системой не устанавливайте это поле. | струна Ограничения целостности: Минимальная длина = 36 Максимальная длина = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
identityType | [Обязательный] Указывает тип платформы удостоверений. | Managed (обязательный) |
objectId | Указывает назначаемое пользователем удостоверение по идентификатору объекта. Для назначаемого системой не устанавливайте это поле. | струна Ограничения целостности: Минимальная длина = 36 Максимальная длина = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
resourceId | Указывает удостоверение, назначаемое пользователем, по идентификатору ресурса ARM. Для назначаемого системой не устанавливайте это поле. | струна |
MedianStoppingPolicy
Имя | Описание | Ценность |
---|---|---|
policyType | [Обязательный] Имя конфигурации политики | MedianStopping (обязательно) |
Microsoft.MachineLearningServices/workspaces/schedules
Имя | Описание | Ценность |
---|---|---|
имя | Имя ресурса | струна Ограничения целостности: Pattern = ^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$ (обязательно) |
родитель | В Bicep можно указать родительский ресурс для дочернего ресурса. Это свойство необходимо добавить, только если дочерний ресурс объявлен за пределами родительского ресурса. Дополнительные сведения см. в разделе Дочерний ресурс за пределами родительского ресурса. |
Символьное имя ресурса типа: рабочих областей |
свойства | [Обязательный] Дополнительные атрибуты сущности. | ScheduleProperties (обязательно) |
MLFlowModelJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "mlflow_model" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLFlowModelJobInput
Имя | Описание | Ценность |
---|---|---|
описание | Описание входных данных. | струна |
jobInputType | [Обязательный] Указывает тип задания. | "custom_model" "литерал" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLFlowModelJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "mlflow_model" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
MLTableJobInput
Имя | Описание | Ценность |
---|---|---|
описание | Описание входных данных. | струна |
jobInputType | [Обязательный] Указывает тип задания. | "custom_model" "литерал" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLTableJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "mltable" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLTableJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "mltable" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
Mpi
Имя | Описание | Ценность |
---|---|---|
distributionType | [Обязательный] Указывает тип платформы распространения. | Mpi (обязательно) |
processCountPerInstance | Количество процессов на узел MPI. | int |
NCrossValidations
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoNCrossValidations. Установите значение Custom для типа CustomNCrossValidations. | "Авто" "Custom" (обязательный) |
NlpVerticalFeaturizationSettings
Имя | Описание | Ценность |
---|---|---|
datasetLanguage | Язык набора данных, полезный для текстовых данных. | струна |
NlpVerticalLimitSettings
Имя | Описание | Ценность |
---|---|---|
maxConcurrentTrials | Максимальное число параллельных итераций AutoML. | int |
maxTrials | Число итераций AutoML. | int |
Времени ожидания | Время ожидания задания AutoML. | струна |
Узлов
Имя | Описание | Ценность |
---|---|---|
nodesValueType | Установите значение All для типа AllNodes. | "Все" (обязательно) |
Объективный
Имя | Описание | Ценность |
---|---|---|
цель | [Обязательный] Определяет поддерживаемые цели метрик для настройки гиперпараметров | "Развернуть" "Свернуть" (обязательно) |
primaryMetric | [Обязательный] Имя метрики для оптимизации. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
PipelineJob
Имя | Описание | Ценность |
---|---|---|
Входы | Входные данные для задания конвейера. | PipelineJobInputs |
Рабочих мест | Задания создают задание конвейера. | PipelineJobJobs |
jobType | [Обязательный] Указывает тип задания. | Pipeline (обязательный) |
Выходы | Выходные данные для задания конвейера | PipelineJobOutputs |
Параметры | Параметры конвейера, например ContinueRunOnStepFailure и т. д. | любой |
sourceJobId | Идентификатор ресурса ARM исходного задания. | струна |
PipelineJobInputs
Имя | Описание | Ценность |
---|
PipelineJobJobs
Имя | Описание | Ценность |
---|
PipelineJobOutputs
Имя | Описание | Ценность |
---|
PyTorch
Имя | Описание | Ценность |
---|---|---|
distributionType | [Обязательный] Указывает тип платформы распространения. | PyTorch (обязательный) |
processCountPerInstance | Количество процессов на узел. | int |
RandomSamplingAlgorithm
Имя | Описание | Ценность |
---|---|---|
правило | Конкретный тип случайного алгоритма | "Случайный" 'Sobol' |
выборкаAlgorithmType | [Обязательный] Алгоритм, используемый для создания значений гиперпараметров, а также свойств конфигурации | "Случайный" (обязательный) |
семя | Необязательное целое число, используемое в качестве начального значения для случайного создания чисел | int |
ПовторениеSchedule
Имя | Описание | Ценность |
---|---|---|
Часов | [Обязательный] Список часов для расписания. | int[] (обязательно) |
протокол | [Обязательный] Список минут для расписания. | int[] (обязательно) |
monthDays | Список дней месяца для расписания | int[] |
будни | Список дней для расписания. | Массив строк, содержащий любой из: "Пятница" "Понедельник" "Суббота" "Воскресенье" "Четверг" "Вторник" "Среда" |
ПовторениеTrigger
Имя | Описание | Ценность |
---|---|---|
частота | [Обязательный] Частота запуска расписания. | "День" "Час" "Минута" "Месяц" "Неделя" (обязательно) |
интервал | [Обязательный] Указывает интервал расписания в сочетании с частотой | int (обязательно) |
расписание | Расписание повторения. | ПовторениеSchedule |
triggerType | [Обязательный] | "Повторение" (обязательно) |
Регрессия
Имя | Описание | Ценность |
---|---|---|
cvSplitColumnNames | Столбцы, используемые для данных CVSplit. | string[] |
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | TableVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Количество сверток перекрестной проверки, применяемых к набору данных для обучения Если набор данных проверки не указан. |
NCrossValidations |
primaryMetric | Основная метрика для задачи регрессии. | "NormalizedMeanAbsoluteError" "NormalizedRootMeanSquaredError" "R2Score" 'SpearmanCorrelation' |
taskType | [Обязательный] Тип задачи для AutoMLJob. | Регрессия (обязательно) |
testData | Проверка входных данных. | MLTableJobInput |
testDataSize | Доля тестового набора данных, который необходимо отложить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
trainingSettings | Входные данные для этапа обучения для задания AutoML. | РегрессионTrainingSettings |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
weightColumnName | Имя столбца веса образца. Автоматизированное машинное обучение поддерживает взвешанный столбец в качестве входных данных, что приводит к тому, что строки в данных будут взвешированы вверх или вниз. | струна |
РегрессияTrainingSettings
Имя | Описание | Ценность |
---|---|---|
allowedTrainingAlgorithms | Разрешенные модели для задачи регрессии. | Массив строк, содержащий любой из: "DecisionTree" ElasticNet "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "RandomForest" "ДИНАМ" "XGBoostRegressor" |
blockedTrainingAlgorithms | Заблокированные модели для задачи регрессии. | Массив строк, содержащий любой из: "DecisionTree" ElasticNet "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "RandomForest" "ДИНАМ" "XGBoostRegressor" |
enableDnnTraining | Включите рекомендацию моделей DNN. | bool |
enableModelExplainability | Пометка для включения объяснимости для оптимальной модели. | bool |
enableOnnxCompatibleModels | Флаг включения совместимых моделей onnx. | bool |
enableStackEnsemble | Включите запуск ансамбля стека. | bool |
enableVoteEnsemble | Включите запуск ансамбля голосования. | bool |
ensembleModelDownloadTimeout | Во время создания модели VotingEnsemble и StackEnsemble скачиваются несколько встроенных моделей из предыдущих дочерних запусков. Настройте этот параметр с более высоким значением, чем 300 с, если требуется больше времени. |
струна |
stackEnsembleSettings | Параметры ансамбля стека для выполнения ансамбля стека. | StackEnsembleSettings |
ResourceBaseProperties
Имя | Описание | Ценность |
---|
ResourceBaseProperties
Имя | Описание | Ценность |
---|
ResourceBaseTags
Имя | Описание | Ценность |
---|
ResourceBaseTags
Имя | Описание | Ценность |
---|
ResourceConfigurationProperties
Имя | Описание | Ценность |
---|
ВыборкаAlgorithm
Имя | Описание | Ценность |
---|---|---|
выборкаAlgorithmType | Установите значение Bayesian для типа BayesianSamplingAlgorithm. Установите значение Grid для типа GridSamplingAlgorithm. Установите значение Random для типа RandomSamplingAlgorithm. | "Байезиан" "Сетка" "Случайный" (обязательный) |
ScheduleActionBase
Имя | Описание | Ценность |
---|---|---|
actionType | Установите значение CreateJob для типа JobScheduleAction. Установите значение InvokeBatchEndpoint для типа EndpointScheduleAction. | CreateJob InvokeBatchEndpoint (обязательно) |
ScheduleProperties
Имя | Описание | Ценность |
---|---|---|
действие | [Обязательный] Указывает действие расписания | ScheduleActionBase (обязательно) |
описание | Текст описания ресурса. | струна |
displayName | Отображаемое имя расписания. | струна |
isEnabled | Включен ли расписание? | bool |
свойства | Словарь свойств ресурса. | ResourceBaseProperties |
Теги | Словарь тегов. Теги можно добавлять, удалять и обновлять. | ResourceBaseTags |
триггер | [Обязательный] Указывает сведения о триггере | TriggerBase (обязательно) |
Сезонность
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа autoSeasonality. Установите значение Custom для типа CustomSeasonality. | "Авто" "Custom" (обязательный) |
StackEnsembleSettings
Имя | Описание | Ценность |
---|---|---|
stackMetaLearnerKWargs | Необязательные параметры для передачи инициализатору метаучителя. | любой |
stackMetaLearnerTrainPercentage | Указывает пропорцию обучающего набора (при выборе типа обучения и проверки обучения), зарезервированного для обучения метаучителя. Значение по умолчанию — 0.2. | int |
stackMetaLearnerType | Метаобучатель — это модель, обученная на выходных данных отдельных разнородных моделей. | ElasticNet "ElasticNetCV" LightGBMClassifier LightGBMRegressor "LinearRegression" "LogisticRegression" "LogisticRegressionCV" "Нет" |
SweepJob
Имя | Описание | Ценность |
---|---|---|
ранняятерминация | Политики раннего завершения позволяют отменять низкопроизводительные запуски до их завершения | EarlyTerminationPolicy |
Входы | Сопоставление входных привязок данных, используемых в задании. | SweepJobInputs |
jobType | [Обязательный] Указывает тип задания. | "Очистка" (обязательно) |
Ограничения | Ограничение задания очистки. | SweepJobLimits |
объективный | [Обязательный] Цель оптимизации. | Objective (обязательно) |
Выходы | Сопоставление привязок выходных данных, используемых в задании. | |
выборкаAlgorithm | [Обязательный] Алгоритм выборки гиперпараметров | ВыборкаAlgorithm (обязательно) |
searchSpace | [Обязательный] Словарь, содержащий каждый параметр и его распределение. Ключ словаря — это имя параметра | любой (обязательный) |
испытание | [Обязательный] Определение компонента пробной версии. | TrialComponent (обязательно) |
SweepJobInputs
Имя | Описание | Ценность |
---|
SweepJobLimits
Имя | Описание | Ценность |
---|---|---|
jobLimitsType | [Обязательный] Тип JobLimit. | "Command" "Очистка" (обязательно) |
maxConcurrentTrials | Максимальное число параллельных пробных версий задания очистки. | int |
maxTotalTrials | Максимальное количество пробных версий заданий для очистки. | int |
Времени ожидания | Максимальная длительность выполнения в формате ISO 8601, после которой задание будет отменено. Поддерживается только длительность с точностью до секунд. | струна |
trialTimeout | Значение времени ожидания пробной версии задания подметки. | струна |
SweepJobOutputs
Имя | Описание | Ценность |
---|
TableVerticalFeaturizationSettings
Имя | Описание | Ценность |
---|---|---|
заблокированныеTransformers | Эти преобразователи не должны использоваться в признаках. | Массив строк, содержащий любой из: "CatTargetEncoder" CountVectorizer HashOneHotEncoder 'LabelEncoder' 'NaiveBayes' OneHotEncoder TextTargetEncoder 'TfIdf' 'WoETargetEncoder' "WordEmbedding" |
columnNameAndTypes | Словарь имени столбца и его типа (int, float, string, datetime и т. д.). | TableVerticalFeaturizationSettingsColumnNameAndTypes |
datasetLanguage | Язык набора данных, полезный для текстовых данных. | струна |
enableDnnFeaturization | Определяет, следует ли использовать признаки на основе Dnn для признаков данных. | bool |
режим | Режим признаков . Пользователь может сохранить режим авто по умолчанию, и AutoML будет заботиться о необходимом преобразовании данных на этапе признаков. Если выбрано значение "Выкл.", то нет признаков. Если выбран параметр Custom, пользователь может указать дополнительные входные данные, чтобы настроить способ выполнения признаков. |
"Авто" "Custom" "Выкл. |
преобразовательParams | Пользователь может указать дополнительные преобразователи, которые будут использоваться вместе со столбцами, к которым он будет применяться, и параметрами для конструктора преобразователя. | TableVerticalFeaturizationSettingsTransformerParams |
TableVerticalFeaturizationSettingsColumnNameAndTypes
Имя | Описание | Ценность |
---|
TableVerticalFeaturizationSettingsTransformerParams
Имя | Описание | Ценность |
---|
TableVerticalLimitSettings
Имя | Описание | Ценность |
---|---|---|
enableEarlyTermination | Включите досрочное завершение, определяет, будет ли autoMLJob завершаться рано, если в последних 20 итерациях не будет улучшена оценка. | bool |
exitScore | Оценка выхода для задания AutoML. | int |
maxConcurrentTrials | Максимальное число одновременных итераций. | int |
maxCoresPerTrial | Максимальное число ядер на итерацию. | int |
maxTrials | Количество итераций. | int |
Времени ожидания | Время ожидания задания AutoML. | струна |
trialTimeout | Время ожидания итерации. | струна |
TargetLags
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoTargetLags. Установите значение Custom для типа CustomTargetLags. | "Авто" "Custom" (обязательный) |
TargetRollingWindowSize
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoTargetRollingWindowSize. Установите значение Custom для типа CustomTargetRollingWindowSize. | "Авто" "Custom" (обязательный) |
TensorFlow
Имя | Описание | Ценность |
---|---|---|
distributionType | [Обязательный] Указывает тип платформы распространения. | TensorFlow (обязательный) |
parameterServerCount | Количество задач сервера параметров. | int |
workerCount | Число рабочих ролей. Если этот параметр не указан, по умолчанию используется число экземпляров. | int |
TextClassification
Имя | Описание | Ценность |
---|---|---|
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | NlpVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | NlpVerticalLimitSettings |
primaryMetric | Основная метрика для задачи Text-Classification. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
taskType | [Обязательный] Тип задачи для AutoMLJob. | TextClassification (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
TextClassificationMultilabel
Имя | Описание | Ценность |
---|---|---|
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | NlpVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | NlpVerticalLimitSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | TextClassificationMultilabel (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
TextNer
Имя | Описание | Ценность |
---|---|---|
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | NlpVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | NlpVerticalLimitSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | TextNER (обязательно) |
validationData | Входные данные проверки. | MLTableJobInput |
TrialComponent
Имя | Описание | Ценность |
---|---|---|
codeId | Идентификатор ресурса ARM ресурса ресурса кода. | струна |
команда | [Обязательный] Команда, выполняемая при запуске задания. Например. "Python train.py" | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
распределение | Конфигурация распределения задания. Если задано, это должен быть один из Mpi, Tensorflow, PyTorch или NULL. | distributionConfiguration |
environmentId | [Обязательный] Идентификатор ресурса ARM спецификации среды для задания. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
environmentVariables | Переменные среды, включенные в задание. | TrialComponentEnvironmentVariables |
ресурсы | Конфигурация вычислительных ресурсов для задания. | JobResourceConfiguration |
TrialComponentEnvironmentVariables
Имя | Описание | Ценность |
---|
TriggerBase
Имя | Описание | Ценность |
---|---|---|
endTime | Указывает время окончания расписания в ISO 8601, но без смещения в формате UTC. См. https://en.wikipedia.org/wiki/ISO_8601. Формат перекомментированного формата будет "2022-06-01T00:00:01" Если это не так, расписание будет выполняться на неопределенный срок |
струна |
startTime | Указывает время начала расписания в формате ISO 8601, но без смещения в формате UTC. | струна |
часовой пояс | Указывает часовой пояс, в котором выполняется расписание. Часовой пояс Должен соответствовать формату часового пояса Windows. Ссылка: /windows-hardware/manufacture/desktop/default-time-zones?view=windows-11 |
струна |
triggerType | Установите значение Cron для типа CronTrigger. Установите значение "Повторение" для типа повторения. | "Cron" "Повторение" (обязательно) |
TritonModelJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "triton_model" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
TritonModelJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "triton_model" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
УсечениеSelectionPolicy
Имя | Описание | Ценность |
---|---|---|
policyType | [Обязательный] Имя конфигурации политики | УсечениеSelection (обязательно) |
усечениеPercentage | Процент выполнения для отмены по каждому интервалу оценки. | int |
UriFileJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "uri_file" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
UriFileJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "uri_file" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
UriFolderJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "uri_folder" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
UriFolderJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "uri_folder" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
UserIdentity
Имя | Описание | Ценность |
---|---|---|
identityType | [Обязательный] Указывает тип платформы удостоверений. | UserIdentity (обязательно) |
Определение ресурса шаблона ARM
Тип ресурса рабочих областей и расписаний можно развернуть с помощью операций, предназначенных для следующих операций:
- группы ресурсов . См. команды развертывания группы ресурсов
Список измененных свойств в каждой версии API см. в журнала изменений.
Формат ресурса
Чтобы создать ресурс Microsoft.MachineLearningServices/workspaces/schedules, добавьте следующий код JSON в шаблон.
{
"type": "Microsoft.MachineLearningServices/workspaces/schedules",
"apiVersion": "2023-04-01",
"name": "string",
"properties": {
"action": {
"actionType": "string"
// For remaining properties, see ScheduleActionBase objects
},
"description": "string",
"displayName": "string",
"isEnabled": "bool",
"properties": {
"{customized property}": "string"
},
"tags": {
"{customized property}": "string"
},
"trigger": {
"endTime": "string",
"startTime": "string",
"timeZone": "string",
"triggerType": "string"
// For remaining properties, see TriggerBase objects
}
}
}
Объекты ScheduleActionBase
Задайте свойство actionType, чтобы указать тип объекта.
Для CreateJobиспользуйте:
{
"actionType": "CreateJob",
"jobDefinition": {
"componentId": "string",
"computeId": "string",
"description": "string",
"displayName": "string",
"experimentName": "string",
"identity": {
"identityType": "string"
// For remaining properties, see IdentityConfiguration objects
},
"isArchived": "bool",
"properties": {
"{customized property}": "string"
},
"services": {
"{customized property}": {
"endpoint": "string",
"jobServiceType": "string",
"nodes": {
"nodesValueType": "string"
// For remaining properties, see Nodes objects
},
"port": "int",
"properties": {
"{customized property}": "string"
}
}
},
"tags": {
"{customized property}": "string"
},
"jobType": "string"
// For remaining properties, see JobBaseProperties objects
}
}
Для InvokeBatchEndpointиспользуйте:
{
"actionType": "InvokeBatchEndpoint",
"endpointInvocationDefinition": {}
}
Объекты EarlyTerminationPolicy
Задайте свойство policyType, чтобы указать тип объекта.
Для Banditиспользуйте:
{
"policyType": "Bandit",
"slackAmount": "int",
"slackFactor": "int"
}
Для MedianStoppingиспользуйте:
{
"policyType": "MedianStopping"
}
Для TruncationSelectionиспользуйте:
{
"policyType": "TruncationSelection",
"truncationPercentage": "int"
}
Объекты сезонности
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
"mode": "Auto"
}
Для пользовательских
{
"mode": "Custom",
"value": "int"
}
Объекты ForecastHorizon
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
"mode": "Auto"
}
Для пользовательских
{
"mode": "Custom",
"value": "int"
}
Объекты ВыборкиAlgorithm
Задайте свойство выборкиAlgorithmType, чтобы указать тип объекта.
Для Байезианаиспользуйте:
{
"samplingAlgorithmType": "Bayesian"
}
Для сеткииспользуйте:
{
"samplingAlgorithmType": "Grid"
}
Для случайныхиспользуйте:
{
"rule": "string",
"samplingAlgorithmType": "Random",
"seed": "int"
}
Объекты JobBaseProperties
Задайте свойство jobType, чтобы указать тип объекта.
Для AutoMLиспользуйте:
{
"environmentId": "string",
"environmentVariables": {
"{customized property}": "string"
},
"jobType": "AutoML",
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"resources": {
"dockerArgs": "string",
"instanceCount": "int",
"instanceType": "string",
"properties": {
"{customized property}": {}
},
"shmSize": "string"
},
"taskDetails": {
"logVerbosity": "string",
"targetColumnName": "string",
"trainingData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"taskType": "string"
// For remaining properties, see AutoMLVertical objects
}
}
Для команды используйте следующую команду:
{
"codeId": "string",
"command": "string",
"distribution": {
"distributionType": "string"
// For remaining properties, see DistributionConfiguration objects
},
"environmentId": "string",
"environmentVariables": {
"{customized property}": "string"
},
"inputs": {
"{customized property}": {
"description": "string",
"jobInputType": "string"
// For remaining properties, see JobInput objects
}
},
"jobType": "Command",
"limits": {
"jobLimitsType": "string",
"timeout": "string"
},
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"resources": {
"dockerArgs": "string",
"instanceCount": "int",
"instanceType": "string",
"properties": {
"{customized property}": {}
},
"shmSize": "string"
}
}
Для конвейераиспользуйте:
{
"inputs": {
"{customized property}": {
"description": "string",
"jobInputType": "string"
// For remaining properties, see JobInput objects
}
},
"jobs": {
"{customized property}": {}
},
"jobType": "Pipeline",
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"settings": {},
"sourceJobId": "string"
}
Для
{
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"inputs": {
"{customized property}": {
"description": "string",
"jobInputType": "string"
// For remaining properties, see JobInput objects
}
},
"jobType": "Sweep",
"limits": {
"jobLimitsType": "string",
"maxConcurrentTrials": "int",
"maxTotalTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"objective": {
"goal": "string",
"primaryMetric": "string"
},
"outputs": {
"{customized property}": {
"description": "string",
"jobOutputType": "string"
// For remaining properties, see JobOutput objects
}
},
"samplingAlgorithm": {
"samplingAlgorithmType": "string"
// For remaining properties, see SamplingAlgorithm objects
},
"searchSpace": {},
"trial": {
"codeId": "string",
"command": "string",
"distribution": {
"distributionType": "string"
// For remaining properties, see DistributionConfiguration objects
},
"environmentId": "string",
"environmentVariables": {
"{customized property}": "string"
},
"resources": {
"dockerArgs": "string",
"instanceCount": "int",
"instanceType": "string",
"properties": {
"{customized property}": {}
},
"shmSize": "string"
}
}
}
Объекты JobOutput
Задайте свойство jobOutputType, чтобы указать тип объекта.
Для custom_modelиспользуйте:
{
"jobOutputType": "custom_model",
"mode": "string",
"uri": "string"
}
Для mlflow_modelиспользуйте:
{
"jobOutputType": "mlflow_model",
"mode": "string",
"uri": "string"
}
Для mltableиспользуйте:
{
"jobOutputType": "mltable",
"mode": "string",
"uri": "string"
}
Для triton_modelиспользуйте:
{
"jobOutputType": "triton_model",
"mode": "string",
"uri": "string"
}
Для uri_fileиспользуйте:
{
"jobOutputType": "uri_file",
"mode": "string",
"uri": "string"
}
Для uri_folderиспользуйте:
{
"jobOutputType": "uri_folder",
"mode": "string",
"uri": "string"
}
Объекты TargetRollingWindowSize
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
"mode": "Auto"
}
Для пользовательских
{
"mode": "Custom",
"value": "int"
}
Объекты AutoMLVertical
Задайте свойство taskType, чтобы указать тип объекта.
Для классификациииспользуйте:
{
"cvSplitColumnNames": [ "string" ],
"featurizationSettings": {
"blockedTransformers": [ "string" ],
"columnNameAndTypes": {
"{customized property}": "string"
},
"datasetLanguage": "string",
"enableDnnFeaturization": "bool",
"mode": "string",
"transformerParams": {
"{customized property}": [
{
"fields": [ "string" ],
"parameters": {}
}
]
}
},
"limitSettings": {
"enableEarlyTermination": "bool",
"exitScore": "int",
"maxConcurrentTrials": "int",
"maxCoresPerTrial": "int",
"maxTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"nCrossValidations": {
"mode": "string"
// For remaining properties, see NCrossValidations objects
},
"positiveLabel": "string",
"primaryMetric": "string",
"taskType": "Classification",
"testData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"testDataSize": "int",
"trainingSettings": {
"allowedTrainingAlgorithms": [ "string" ],
"blockedTrainingAlgorithms": [ "string" ],
"enableDnnTraining": "bool",
"enableModelExplainability": "bool",
"enableOnnxCompatibleModels": "bool",
"enableStackEnsemble": "bool",
"enableVoteEnsemble": "bool",
"ensembleModelDownloadTimeout": "string",
"stackEnsembleSettings": {
"stackMetaLearnerKWargs": {},
"stackMetaLearnerTrainPercentage": "int",
"stackMetaLearnerType": "string"
}
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int",
"weightColumnName": "string"
}
Для прогнозированияиспользуйте:
{
"cvSplitColumnNames": [ "string" ],
"featurizationSettings": {
"blockedTransformers": [ "string" ],
"columnNameAndTypes": {
"{customized property}": "string"
},
"datasetLanguage": "string",
"enableDnnFeaturization": "bool",
"mode": "string",
"transformerParams": {
"{customized property}": [
{
"fields": [ "string" ],
"parameters": {}
}
]
}
},
"forecastingSettings": {
"countryOrRegionForHolidays": "string",
"cvStepSize": "int",
"featureLags": "string",
"forecastHorizon": {
"mode": "string"
// For remaining properties, see ForecastHorizon objects
},
"frequency": "string",
"seasonality": {
"mode": "string"
// For remaining properties, see Seasonality objects
},
"shortSeriesHandlingConfig": "string",
"targetAggregateFunction": "string",
"targetLags": {
"mode": "string"
// For remaining properties, see TargetLags objects
},
"targetRollingWindowSize": {
"mode": "string"
// For remaining properties, see TargetRollingWindowSize objects
},
"timeColumnName": "string",
"timeSeriesIdColumnNames": [ "string" ],
"useStl": "string"
},
"limitSettings": {
"enableEarlyTermination": "bool",
"exitScore": "int",
"maxConcurrentTrials": "int",
"maxCoresPerTrial": "int",
"maxTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"nCrossValidations": {
"mode": "string"
// For remaining properties, see NCrossValidations objects
},
"primaryMetric": "string",
"taskType": "Forecasting",
"testData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"testDataSize": "int",
"trainingSettings": {
"allowedTrainingAlgorithms": [ "string" ],
"blockedTrainingAlgorithms": [ "string" ],
"enableDnnTraining": "bool",
"enableModelExplainability": "bool",
"enableOnnxCompatibleModels": "bool",
"enableStackEnsemble": "bool",
"enableVoteEnsemble": "bool",
"ensembleModelDownloadTimeout": "string",
"stackEnsembleSettings": {
"stackMetaLearnerKWargs": {},
"stackMetaLearnerTrainPercentage": "int",
"stackMetaLearnerType": "string"
}
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int",
"weightColumnName": "string"
}
Для ImageClassificationиспользуйте:
{
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"modelSettings": {
"advancedSettings": "string",
"amsGradient": "bool",
"augmentations": "string",
"beta1": "int",
"beta2": "int",
"checkpointFrequency": "int",
"checkpointModel": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"checkpointRunId": "string",
"distributed": "bool",
"earlyStopping": "bool",
"earlyStoppingDelay": "int",
"earlyStoppingPatience": "int",
"enableOnnxNormalization": "bool",
"evaluationFrequency": "int",
"gradientAccumulationStep": "int",
"layersToFreeze": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"modelName": "string",
"momentum": "int",
"nesterov": "bool",
"numberOfEpochs": "int",
"numberOfWorkers": "int",
"optimizer": "string",
"randomSeed": "int",
"stepLRGamma": "int",
"stepLRStepSize": "int",
"trainingBatchSize": "int",
"trainingCropSize": "int",
"validationBatchSize": "int",
"validationCropSize": "int",
"validationResizeSize": "int",
"warmupCosineLRCycles": "int",
"warmupCosineLRWarmupEpochs": "int",
"weightDecay": "int",
"weightedLoss": "int"
},
"primaryMetric": "string",
"searchSpace": [
{
"amsGradient": "string",
"augmentations": "string",
"beta1": "string",
"beta2": "string",
"distributed": "string",
"earlyStopping": "string",
"earlyStoppingDelay": "string",
"earlyStoppingPatience": "string",
"enableOnnxNormalization": "string",
"evaluationFrequency": "string",
"gradientAccumulationStep": "string",
"layersToFreeze": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"modelName": "string",
"momentum": "string",
"nesterov": "string",
"numberOfEpochs": "string",
"numberOfWorkers": "string",
"optimizer": "string",
"randomSeed": "string",
"stepLRGamma": "string",
"stepLRStepSize": "string",
"trainingBatchSize": "string",
"trainingCropSize": "string",
"validationBatchSize": "string",
"validationCropSize": "string",
"validationResizeSize": "string",
"warmupCosineLRCycles": "string",
"warmupCosineLRWarmupEpochs": "string",
"weightDecay": "string",
"weightedLoss": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"taskType": "ImageClassification",
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int"
}
Для ImageClassificationMultilabelиспользуйте:
{
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"modelSettings": {
"advancedSettings": "string",
"amsGradient": "bool",
"augmentations": "string",
"beta1": "int",
"beta2": "int",
"checkpointFrequency": "int",
"checkpointModel": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"checkpointRunId": "string",
"distributed": "bool",
"earlyStopping": "bool",
"earlyStoppingDelay": "int",
"earlyStoppingPatience": "int",
"enableOnnxNormalization": "bool",
"evaluationFrequency": "int",
"gradientAccumulationStep": "int",
"layersToFreeze": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"modelName": "string",
"momentum": "int",
"nesterov": "bool",
"numberOfEpochs": "int",
"numberOfWorkers": "int",
"optimizer": "string",
"randomSeed": "int",
"stepLRGamma": "int",
"stepLRStepSize": "int",
"trainingBatchSize": "int",
"trainingCropSize": "int",
"validationBatchSize": "int",
"validationCropSize": "int",
"validationResizeSize": "int",
"warmupCosineLRCycles": "int",
"warmupCosineLRWarmupEpochs": "int",
"weightDecay": "int",
"weightedLoss": "int"
},
"primaryMetric": "string",
"searchSpace": [
{
"amsGradient": "string",
"augmentations": "string",
"beta1": "string",
"beta2": "string",
"distributed": "string",
"earlyStopping": "string",
"earlyStoppingDelay": "string",
"earlyStoppingPatience": "string",
"enableOnnxNormalization": "string",
"evaluationFrequency": "string",
"gradientAccumulationStep": "string",
"layersToFreeze": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"modelName": "string",
"momentum": "string",
"nesterov": "string",
"numberOfEpochs": "string",
"numberOfWorkers": "string",
"optimizer": "string",
"randomSeed": "string",
"stepLRGamma": "string",
"stepLRStepSize": "string",
"trainingBatchSize": "string",
"trainingCropSize": "string",
"validationBatchSize": "string",
"validationCropSize": "string",
"validationResizeSize": "string",
"warmupCosineLRCycles": "string",
"warmupCosineLRWarmupEpochs": "string",
"weightDecay": "string",
"weightedLoss": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"taskType": "ImageClassificationMultilabel",
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int"
}
Для ImageInstanceSegmentationиспользуйте:
{
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"modelSettings": {
"advancedSettings": "string",
"amsGradient": "bool",
"augmentations": "string",
"beta1": "int",
"beta2": "int",
"boxDetectionsPerImage": "int",
"boxScoreThreshold": "int",
"checkpointFrequency": "int",
"checkpointModel": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"checkpointRunId": "string",
"distributed": "bool",
"earlyStopping": "bool",
"earlyStoppingDelay": "int",
"earlyStoppingPatience": "int",
"enableOnnxNormalization": "bool",
"evaluationFrequency": "int",
"gradientAccumulationStep": "int",
"imageSize": "int",
"layersToFreeze": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"maxSize": "int",
"minSize": "int",
"modelName": "string",
"modelSize": "string",
"momentum": "int",
"multiScale": "bool",
"nesterov": "bool",
"nmsIouThreshold": "int",
"numberOfEpochs": "int",
"numberOfWorkers": "int",
"optimizer": "string",
"randomSeed": "int",
"stepLRGamma": "int",
"stepLRStepSize": "int",
"tileGridSize": "string",
"tileOverlapRatio": "int",
"tilePredictionsNmsThreshold": "int",
"trainingBatchSize": "int",
"validationBatchSize": "int",
"validationIouThreshold": "int",
"validationMetricType": "string",
"warmupCosineLRCycles": "int",
"warmupCosineLRWarmupEpochs": "int",
"weightDecay": "int"
},
"primaryMetric": "string",
"searchSpace": [
{
"amsGradient": "string",
"augmentations": "string",
"beta1": "string",
"beta2": "string",
"boxDetectionsPerImage": "string",
"boxScoreThreshold": "string",
"distributed": "string",
"earlyStopping": "string",
"earlyStoppingDelay": "string",
"earlyStoppingPatience": "string",
"enableOnnxNormalization": "string",
"evaluationFrequency": "string",
"gradientAccumulationStep": "string",
"imageSize": "string",
"layersToFreeze": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"maxSize": "string",
"minSize": "string",
"modelName": "string",
"modelSize": "string",
"momentum": "string",
"multiScale": "string",
"nesterov": "string",
"nmsIouThreshold": "string",
"numberOfEpochs": "string",
"numberOfWorkers": "string",
"optimizer": "string",
"randomSeed": "string",
"stepLRGamma": "string",
"stepLRStepSize": "string",
"tileGridSize": "string",
"tileOverlapRatio": "string",
"tilePredictionsNmsThreshold": "string",
"trainingBatchSize": "string",
"validationBatchSize": "string",
"validationIouThreshold": "string",
"validationMetricType": "string",
"warmupCosineLRCycles": "string",
"warmupCosineLRWarmupEpochs": "string",
"weightDecay": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"taskType": "ImageInstanceSegmentation",
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int"
}
Для ImageObjectDetectionиспользуйте:
{
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"modelSettings": {
"advancedSettings": "string",
"amsGradient": "bool",
"augmentations": "string",
"beta1": "int",
"beta2": "int",
"boxDetectionsPerImage": "int",
"boxScoreThreshold": "int",
"checkpointFrequency": "int",
"checkpointModel": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"checkpointRunId": "string",
"distributed": "bool",
"earlyStopping": "bool",
"earlyStoppingDelay": "int",
"earlyStoppingPatience": "int",
"enableOnnxNormalization": "bool",
"evaluationFrequency": "int",
"gradientAccumulationStep": "int",
"imageSize": "int",
"layersToFreeze": "int",
"learningRate": "int",
"learningRateScheduler": "string",
"maxSize": "int",
"minSize": "int",
"modelName": "string",
"modelSize": "string",
"momentum": "int",
"multiScale": "bool",
"nesterov": "bool",
"nmsIouThreshold": "int",
"numberOfEpochs": "int",
"numberOfWorkers": "int",
"optimizer": "string",
"randomSeed": "int",
"stepLRGamma": "int",
"stepLRStepSize": "int",
"tileGridSize": "string",
"tileOverlapRatio": "int",
"tilePredictionsNmsThreshold": "int",
"trainingBatchSize": "int",
"validationBatchSize": "int",
"validationIouThreshold": "int",
"validationMetricType": "string",
"warmupCosineLRCycles": "int",
"warmupCosineLRWarmupEpochs": "int",
"weightDecay": "int"
},
"primaryMetric": "string",
"searchSpace": [
{
"amsGradient": "string",
"augmentations": "string",
"beta1": "string",
"beta2": "string",
"boxDetectionsPerImage": "string",
"boxScoreThreshold": "string",
"distributed": "string",
"earlyStopping": "string",
"earlyStoppingDelay": "string",
"earlyStoppingPatience": "string",
"enableOnnxNormalization": "string",
"evaluationFrequency": "string",
"gradientAccumulationStep": "string",
"imageSize": "string",
"layersToFreeze": "string",
"learningRate": "string",
"learningRateScheduler": "string",
"maxSize": "string",
"minSize": "string",
"modelName": "string",
"modelSize": "string",
"momentum": "string",
"multiScale": "string",
"nesterov": "string",
"nmsIouThreshold": "string",
"numberOfEpochs": "string",
"numberOfWorkers": "string",
"optimizer": "string",
"randomSeed": "string",
"stepLRGamma": "string",
"stepLRStepSize": "string",
"tileGridSize": "string",
"tileOverlapRatio": "string",
"tilePredictionsNmsThreshold": "string",
"trainingBatchSize": "string",
"validationBatchSize": "string",
"validationIouThreshold": "string",
"validationMetricType": "string",
"warmupCosineLRCycles": "string",
"warmupCosineLRWarmupEpochs": "string",
"weightDecay": "string"
}
],
"sweepSettings": {
"earlyTermination": {
"delayEvaluation": "int",
"evaluationInterval": "int",
"policyType": "string"
// For remaining properties, see EarlyTerminationPolicy objects
},
"samplingAlgorithm": "string"
},
"taskType": "ImageObjectDetection",
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int"
}
Для регрессиииспользуйте:
{
"cvSplitColumnNames": [ "string" ],
"featurizationSettings": {
"blockedTransformers": [ "string" ],
"columnNameAndTypes": {
"{customized property}": "string"
},
"datasetLanguage": "string",
"enableDnnFeaturization": "bool",
"mode": "string",
"transformerParams": {
"{customized property}": [
{
"fields": [ "string" ],
"parameters": {}
}
]
}
},
"limitSettings": {
"enableEarlyTermination": "bool",
"exitScore": "int",
"maxConcurrentTrials": "int",
"maxCoresPerTrial": "int",
"maxTrials": "int",
"timeout": "string",
"trialTimeout": "string"
},
"nCrossValidations": {
"mode": "string"
// For remaining properties, see NCrossValidations objects
},
"primaryMetric": "string",
"taskType": "Regression",
"testData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"testDataSize": "int",
"trainingSettings": {
"allowedTrainingAlgorithms": [ "string" ],
"blockedTrainingAlgorithms": [ "string" ],
"enableDnnTraining": "bool",
"enableModelExplainability": "bool",
"enableOnnxCompatibleModels": "bool",
"enableStackEnsemble": "bool",
"enableVoteEnsemble": "bool",
"ensembleModelDownloadTimeout": "string",
"stackEnsembleSettings": {
"stackMetaLearnerKWargs": {},
"stackMetaLearnerTrainPercentage": "int",
"stackMetaLearnerType": "string"
}
},
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
},
"validationDataSize": "int",
"weightColumnName": "string"
}
Для TextClassificationиспользуйте:
{
"featurizationSettings": {
"datasetLanguage": "string"
},
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"primaryMetric": "string",
"taskType": "TextClassification",
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
}
}
Для TextClassificationMultilabelиспользуйте:
{
"featurizationSettings": {
"datasetLanguage": "string"
},
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"taskType": "TextClassificationMultilabel",
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
}
}
Для TextNERиспользуйте:
{
"featurizationSettings": {
"datasetLanguage": "string"
},
"limitSettings": {
"maxConcurrentTrials": "int",
"maxTrials": "int",
"timeout": "string"
},
"taskType": "TextNER",
"validationData": {
"description": "string",
"jobInputType": "string",
"mode": "string",
"uri": "string"
}
}
Объекты NCrossValidations
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
"mode": "Auto"
}
Для пользовательских
{
"mode": "Custom",
"value": "int"
}
Объекты DistributionConfiguration
Задайте свойство
Для Mpiиспользуйте:
{
"distributionType": "Mpi",
"processCountPerInstance": "int"
}
Для PyTorchиспользуйте:
{
"distributionType": "PyTorch",
"processCountPerInstance": "int"
}
Для TensorFlowиспользуйте:
{
"distributionType": "TensorFlow",
"parameterServerCount": "int",
"workerCount": "int"
}
Объекты IdentityConfiguration
Задайте свойство identityType, чтобы указать тип объекта.
Для AMLTokenиспользуйте:
{
"identityType": "AMLToken"
}
Для управляемых
{
"clientId": "string",
"identityType": "Managed",
"objectId": "string",
"resourceId": "string"
}
Для UserIdentityиспользуйте:
{
"identityType": "UserIdentity"
}
Объекты nodes
Задайте свойство nodesValueType, чтобы указать тип объекта.
Для всехиспользуйте:
{
"nodesValueType": "All"
}
Объекты TriggerBase
Задайте свойство triggerType, чтобы указать тип объекта.
Для Cronиспользуйте:
{
"expression": "string",
"triggerType": "Cron"
}
Для повторенияиспользуйте:
{
"frequency": "string",
"interval": "int",
"schedule": {
"hours": [ "int" ],
"minutes": [ "int" ],
"monthDays": [ "int" ],
"weekDays": [ "string" ]
},
"triggerType": "Recurrence"
}
Объекты JobInput
Задайте свойство jobInputType, чтобы указать тип объекта.
Для custom_modelиспользуйте:
{
"jobInputType": "custom_model",
"mode": "string",
"uri": "string"
}
Для литералаиспользуйте:
{
"jobInputType": "literal",
"value": "string"
}
Для mlflow_modelиспользуйте:
{
"jobInputType": "mlflow_model",
"mode": "string",
"uri": "string"
}
Для mltableиспользуйте:
{
"jobInputType": "mltable",
"mode": "string",
"uri": "string"
}
Для triton_modelиспользуйте:
{
"jobInputType": "triton_model",
"mode": "string",
"uri": "string"
}
Для uri_fileиспользуйте:
{
"jobInputType": "uri_file",
"mode": "string",
"uri": "string"
}
Для uri_folderиспользуйте:
{
"jobInputType": "uri_folder",
"mode": "string",
"uri": "string"
}
Объекты TargetLags
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
"mode": "Auto"
}
Для пользовательских
{
"mode": "Custom",
"values": [ "int" ]
}
Значения свойств
AllNodes
Имя | Описание | Ценность |
---|---|---|
nodesValueType | [Обязательный] Тип значения Nodes | "Все" (обязательно) |
AmlToken
Имя | Описание | Ценность |
---|---|---|
identityType | [Обязательный] Указывает тип платформы удостоверений. | AMLToken (обязательно) |
AutoForecastHorizon
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Задайте режим выбора значения горизонта прогнозирования. | "Авто" (обязательно) |
AutoMLJob
Имя | Описание | Ценность |
---|---|---|
environmentId | Идентификатор ресурса ARM спецификации среды для задания. Это необязательное значение для предоставления, если оно не указано, AutoML по умолчанию используется для рабочей версии курируемой среды AutoML при выполнении задания. |
струна |
environmentVariables | Переменные среды, включенные в задание. | AutoMLJobEnvironmentVariables |
jobType | [Обязательный] Указывает тип задания. | AutoML (обязательно) |
Выходы | Сопоставление привязок выходных данных, используемых в задании. | AutoMLJobOutputs |
ресурсы | Конфигурация вычислительных ресурсов для задания. | JobResourceConfiguration |
taskDetails | [Обязательный] Это сценарий, который может быть одним из таблиц/ NLP/Image | AutoMLVertical (обязательно) |
AutoMLJobEnvironmentVariables
Имя | Описание | Ценность |
---|
AutoMLJobOutputs
Имя | Описание | Ценность |
---|
AutoMLVertical
Имя | Описание | Ценность |
---|---|---|
logVerbosity | Подробность журнала для задания. | "Критический" "Отладка" "Ошибка" "Info" NotSet Предупреждение |
targetColumnName | Имя целевого столбца: это столбец прогнозируемых значений. Также называется именем столбца метки в контексте задач классификации. |
струна |
taskType | Установите значение "Классификация" для классификации типов. Установите значение "Прогнозирование" для типа прогнозирования. Установите значение ImageClassification для типа ImageClassification. Установите значение ImageClassificationMultilabel для типа ImageClassificationMultilabel. Установите значение ImageInstanceSegmentation для типа ImageInstanceSegmentation. Установите значение ImageObjectDetection для типа ImageObjectDetection. Установите значение "Регрессия" для регрессии типа. Установите значение TextClassification для типа TextClassification. Установите значение TextClassificationMultilabel для типа TextClassificationMultilabel. Установите значение TextNER для типа TextNer. | "Классификация" "Прогнозирование" ImageClassification ImageClassificationMultilabel "ImageInstanceSegmentation" ImageObjectDetection Регрессия TextClassification TextClassificationMultilabel TextNER (обязательно) |
trainingData | [Обязательный] Входные данные обучения. | MLTableJobInput (обязательно) |
AutoNCrossValidations
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим определения проверок N-Cross. | "Авто" (обязательно) |
Автосесональность
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим сезонности. | "Авто" (обязательно) |
AutoTargetLags
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Настройка режима задержки целевых объектов — автоматическое или настраиваемое | "Авто" (обязательно) |
AutoTargetRollingWindowSize
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим обнаружения TargetRollingWindowSiz. | "Авто" (обязательно) |
BanditPolicy
Имя | Описание | Ценность |
---|---|---|
policyType | [Обязательный] Имя конфигурации политики | "Банда" (обязательно) |
slackAmount | Абсолютное расстояние, допустимое от оптимального выполнения. | int |
slackFactor | Соотношение допустимого расстояния от оптимального выполнения. | int |
BayesianSamplingAlgorithm
Имя | Описание | Ценность |
---|---|---|
выборкаAlgorithmType | [Обязательный] Алгоритм, используемый для создания значений гиперпараметров, а также свойств конфигурации | Байесян (обязательный) |
Классификация
Имя | Описание | Ценность |
---|---|---|
cvSplitColumnNames | Столбцы, используемые для данных CVSplit. | string[] |
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | TableVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Количество сверток перекрестной проверки, применяемых к набору данных для обучения Если набор данных проверки не указан. |
NCrossValidations |
positiveLabel | Положительная метка для вычисления двоичных метрик. | струна |
primaryMetric | Первичная метрика для задачи. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
taskType | [Обязательный] Тип задачи для AutoMLJob. | "Классификация" (обязательно) |
testData | Проверка входных данных. | MLTableJobInput |
testDataSize | Доля тестового набора данных, который необходимо отложить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
trainingSettings | Входные данные для этапа обучения для задания AutoML. | КлассификацияTrainingSettings |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
weightColumnName | Имя столбца веса образца. Автоматизированное машинное обучение поддерживает взвешанный столбец в качестве входных данных, что приводит к тому, что строки в данных будут взвешированы вверх или вниз. | струна |
КлассификацияTrainingSettings
Имя | Описание | Ценность |
---|---|---|
allowedTrainingAlgorithms | Разрешенные модели для задачи классификации. | Массив строк, содержащий любой из: 'БернуллиNaiveBayes' "DecisionTree" "ExtremeRandomTrees" 'GradientBoosting' KNN LightGBM "LinearSVM" "LogisticRegression" MultinomialNaiveBayes "RandomForest" "ДИНАМ" SVM "XGBoostClassifier" |
blockedTrainingAlgorithms | Заблокированные модели для задачи классификации. | Массив строк, содержащий любой из: 'БернуллиNaiveBayes' "DecisionTree" "ExtremeRandomTrees" 'GradientBoosting' KNN LightGBM "LinearSVM" "LogisticRegression" MultinomialNaiveBayes "RandomForest" "ДИНАМ" SVM "XGBoostClassifier" |
enableDnnTraining | Включите рекомендацию моделей DNN. | bool |
enableModelExplainability | Пометка для включения объяснимости для оптимальной модели. | bool |
enableOnnxCompatibleModels | Флаг включения совместимых моделей onnx. | bool |
enableStackEnsemble | Включите запуск ансамбля стека. | bool |
enableVoteEnsemble | Включите запуск ансамбля голосования. | bool |
ensembleModelDownloadTimeout | Во время создания модели VotingEnsemble и StackEnsemble скачиваются несколько встроенных моделей из предыдущих дочерних запусков. Настройте этот параметр с более высоким значением, чем 300 с, если требуется больше времени. |
струна |
stackEnsembleSettings | Параметры ансамбля стека для выполнения ансамбля стека. | StackEnsembleSettings |
ColumnTransformer
Имя | Описание | Ценность |
---|---|---|
Поля | Поля для применения логики преобразователя. | string[] |
Параметры | Различные свойства, передаваемые преобразователю. Ожидается, что входные данные — это словарь пар "ключ", "значение" в формате JSON. |
любой |
CommandJob
Имя | Описание | Ценность |
---|---|---|
codeId | Идентификатор ресурса ARM ресурса ресурса кода. | струна |
команда | [Обязательный] Команда, выполняемая при запуске задания. Например. "Python train.py" | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
распределение | Конфигурация распределения задания. Если задано, это должен быть один из Mpi, Tensorflow, PyTorch или NULL. | distributionConfiguration |
environmentId | [Обязательный] Идентификатор ресурса ARM спецификации среды для задания. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
environmentVariables | Переменные среды, включенные в задание. | CommandJobEnvironmentVariables |
Входы | Сопоставление входных привязок данных, используемых в задании. | CommandJobInputs |
jobType | [Обязательный] Указывает тип задания. | "Command" (обязательный) |
Ограничения | Ограничение задания команд. | CommandJobLimits |
Выходы | Сопоставление привязок выходных данных, используемых в задании. | CommandJobOutputs |
ресурсы | Конфигурация вычислительных ресурсов для задания. | JobResourceConfiguration |
CommandJobEnvironmentVariables
Имя | Описание | Ценность |
---|
CommandJobInputs
Имя | Описание | Ценность |
---|
CommandJobLimits
Имя | Описание | Ценность |
---|---|---|
jobLimitsType | [Обязательный] Тип JobLimit. | "Command" "Очистка" (обязательно) |
Времени ожидания | Максимальная длительность выполнения в формате ISO 8601, после которой задание будет отменено. Поддерживается только длительность с точностью до секунд. | струна |
CommandJobOutputs
Имя | Описание | Ценность |
---|
CronTrigger
Имя | Описание | Ценность |
---|---|---|
выражение | [Обязательный] Указывает выражение крона расписания. Выражение должно соответствовать формату NCronTab. |
струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
triggerType | [Обязательный] | "Cron" (обязательно) |
CustomForecastHorizon
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Задайте режим выбора значения горизонта прогнозирования. | "Custom" (обязательный) |
ценность | [Обязательный] Прогноз значения горизонта. | int (обязательно) |
CustomModelJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "custom_model" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
CustomModelJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "custom_model" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
CustomNCrossValidations
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим определения проверок N-Cross. | "Custom" (обязательный) |
ценность | [Обязательный] Значение N-Cross validations. | int (обязательно) |
CustomSeasonality
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим сезонности. | "Custom" (обязательный) |
ценность | [Обязательный] Значение сезонности. | int (обязательно) |
CustomTargetLags
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Настройка режима задержки целевых объектов — автоматическое или настраиваемое | "Custom" (обязательный) |
Значения | [Обязательный] Задайте значения задержки целевых значений. | int[] (обязательно) |
CustomTargetRollingWindowSize
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим обнаружения TargetRollingWindowSiz. | "Custom" (обязательный) |
ценность | [Обязательный] Значение TargetRollingWindowSize. | int (обязательно) |
DistributionConfiguration
Имя | Описание | Ценность |
---|---|---|
distributionType | Установите значение Mpi для типа Mpi. Установите значение PyTorch для типа PyTorch. Установите значение TensorFlow для типа TensorFlow. | "Mpi" "PyTorch" TensorFlow (обязательный) |
EarlyTerminationPolicy
Имя | Описание | Ценность |
---|---|---|
delayEvaluation | Количество интервалов, с помощью которых необходимо отложить первую оценку. | int |
evaluationInterval | Интервал (количество запусков) между оценками политики. | int |
policyType | Установите значение "Bandit" для типа BanditPolicy. Установите значение MedianStopping для типа MedianStoppingPolicy. Задайте значение TruncationSelection для типа TruncationSelectionPolicy. | "Бандит" MedianStopping УсечениеSelection (обязательно) |
EndpointScheduleAction
Имя | Описание | Ценность |
---|---|---|
actionType | [Обязательный] Указывает тип действия расписания | InvokeBatchEndpoint (обязательно) |
endpointInvocationDefinition | [Обязательный] Определяет сведения о определении действия расписания. <см. href="TBD" /> |
любой (обязательный) |
ПрогнозHorizon
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoForecastHorizon. Установите значение Custom для типа CustomForecastHorizon. | "Авто" "Custom" (обязательный) |
Прогнозирование
Имя | Описание | Ценность |
---|---|---|
cvSplitColumnNames | Столбцы, используемые для данных CVSplit. | string[] |
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | TableVerticalFeaturizationSettings |
forecastingSettings | Прогнозирование определенных входных данных задачи. | ForecastingSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Количество сверток перекрестной проверки, применяемых к набору данных для обучения Если набор данных проверки не указан. |
NCrossValidations |
primaryMetric | Основная метрика для задачи прогнозирования. | "NormalizedMeanAbsoluteError" "NormalizedRootMeanSquaredError" "R2Score" 'SpearmanCorrelation' |
taskType | [Обязательный] Тип задачи для AutoMLJob. | "Прогнозирование" (обязательно) |
testData | Проверка входных данных. | MLTableJobInput |
testDataSize | Доля тестового набора данных, который необходимо отложить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
trainingSettings | Входные данные для этапа обучения для задания AutoML. | ПрогнозированиеTrainingSettings |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
weightColumnName | Имя столбца веса образца. Автоматизированное машинное обучение поддерживает взвешанный столбец в качестве входных данных, что приводит к тому, что строки в данных будут взвешированы вверх или вниз. | струна |
ПрогнозированиеSettings
Имя | Описание | Ценность |
---|---|---|
countryOrRegionForHolidays | Страна или регион для праздников для задач прогнозирования. Это должны быть коды стран и регионов ISO 3166, например "US" или "GB". |
струна |
cvStepSize | Число периодов между временем начала одного свертывания CV и следующего свертывания. Для Например, если CVStepSize = 3 для ежедневных данных, время источника для каждого свертывания будеттри дня в стороне. |
int |
featureLags | Флаг для создания задержек для числовых функций с параметром auto или NULL. | "Авто" "Нет" |
прогнозHorizon | Требуемый максимальный горизонт прогнозирования в единицах частоты временных рядов. | ForecastHorizon |
частота | При прогнозировании этот параметр представляет период, с которым нужно, например ежедневно, еженедельно, ежегодно и т. д. Частота прогноза — это частота набора данных по умолчанию. | струна |
Сезонность | Задайте сезонность временных рядов в качестве целого числа, кратного частоты ряда. Если для сезонности задано значение auto, он будет выводиться. |
сезонности |
shortSeriesHandlingConfig | Параметр, определяющий, как autoML должен обрабатывать короткие временные ряды. | "Авто" "Drop" "Нет" "Pad" |
targetAggregateFunction | Функция, используемая для агрегирования целевого столбца временных рядов для соответствия заданной пользователем частоте. Если параметр TargetAggregateFunction задан, т. е. не "Нет", но параметр freq не задан, возникает ошибка. Возможные функции агрегирования целевых значений: sum, max, min и среднее. |
"Max" "Среднее" "Min" "Нет" "Sum" |
targetLags | Число прошлых периодов задержки от целевого столбца. | TargetLags |
targetRollingWindowSize | Количество прошлых периодов, используемых для создания скользящего среднего окна целевого столбца. | TargetRollingWindowSize |
timeColumnName | Имя столбца времени. Этот параметр требуется при прогнозировании для указания столбца datetime в входных данных, используемых для создания временных рядов и вывода его частоты. | струна |
timeSeriesIdColumnNames | Имена столбцов, используемых для группировки таймерий. Его можно использовать для создания нескольких рядов. Если набор данных не определен, предполагается, что набор данных является одним временным рядом. Этот параметр используется с прогнозированием типа задачи. |
string[] |
useStl | Настройте декомпозицию STL целевого столбца временных рядов. | "Нет" "Сезон" 'SeasonTrend' |
ПрогнозированиеTrainingSettings
Имя | Описание | Ценность |
---|---|---|
allowedTrainingAlgorithms | Разрешенные модели для задачи прогнозирования. | Массив строк, содержащий любой из: 'Arimax' AutoArima "Среднее" "DecisionTree" ElasticNet "ЭкспоненциальнаяSmoothing" "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "Наивный" "Пророк" "RandomForest" "СезоннаяAverage" "СезоннаяNaive" "ДИНАМ" 'TCNForecaster' "XGBoostRegressor" |
blockedTrainingAlgorithms | Заблокированные модели для задачи прогнозирования. | Массив строк, содержащий любой из: 'Arimax' AutoArima "Среднее" "DecisionTree" ElasticNet "ЭкспоненциальнаяSmoothing" "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "Наивный" "Пророк" "RandomForest" "СезоннаяAverage" "СезоннаяNaive" "ДИНАМ" 'TCNForecaster' "XGBoostRegressor" |
enableDnnTraining | Включите рекомендацию моделей DNN. | bool |
enableModelExplainability | Пометка для включения объяснимости для оптимальной модели. | bool |
enableOnnxCompatibleModels | Флаг включения совместимых моделей onnx. | bool |
enableStackEnsemble | Включите запуск ансамбля стека. | bool |
enableVoteEnsemble | Включите запуск ансамбля голосования. | bool |
ensembleModelDownloadTimeout | Во время создания модели VotingEnsemble и StackEnsemble скачиваются несколько встроенных моделей из предыдущих дочерних запусков. Настройте этот параметр с более высоким значением, чем 300 с, если требуется больше времени. |
струна |
stackEnsembleSettings | Параметры ансамбля стека для выполнения ансамбля стека. | StackEnsembleSettings |
GridSamplingAlgorithm
Имя | Описание | Ценность |
---|---|---|
выборкаAlgorithmType | [Обязательный] Алгоритм, используемый для создания значений гиперпараметров, а также свойств конфигурации | Grid (обязательно) |
IdentityConfiguration
Имя | Описание | Ценность |
---|---|---|
identityType | Установите значение AMLToken для типа AmlToken. Установите значение Managed для типа ManagedIdentity. Установите значение UserIdentity для типа UserIdentity. | AMLToken "Managed" (Управляемый) UserIdentity (обязательно) |
ImageClassification
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsClassification |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageClassification (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageClassificationMultilabel
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsClassification |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "IOU" "NormMacroRecall" "PrecisionScoreWeighted" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageClassificationMultilabel (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageInstanceSegmentation
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsObjectDetection |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "MeanAveragePrecision" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageInstanceSegmentation (обязательно) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageLimitSettings
Имя | Описание | Ценность |
---|---|---|
maxConcurrentTrials | Максимальное число параллельных итераций AutoML. | int |
maxTrials | Максимальное число итераций AutoML. | int |
Времени ожидания | Время ожидания задания AutoML. | струна |
ImageModelDistributionSettingsClassification
Имя | Описание | Ценность |
---|---|---|
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | струна |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
распределённый | Следует ли использовать обучение распространителя. | струна |
earlyStopping | Включите логику раннего остановки во время обучения. | струна |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
струна |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
струна |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | струна |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | струна |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
струна |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
струна |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | струна |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | струна |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | струна |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | струна |
оптимизатор | Тип оптимизатора. Должно быть либо "хем", "адам", либо "адам". | струна |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | струна |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | струна |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | струна |
trainingCropSize | Размер обрезки изображения, входной в нейронную сеть для обучающего набора данных. Должно быть положительным целым числом. | струна |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | струна |
validationCropSize | Размер обрезки изображения, входной в нейронную сеть для набора данных проверки. Должно быть положительным целым числом. | струна |
validationResizeSize | Размер изображения, в который необходимо изменить размер перед обрезкой для набора данных проверки. Должно быть положительным целым числом. | струна |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | струна |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | струна |
весеedLoss | Весовая потеря. Допустимые значения — 0 без потери веса. 1 для взвешаемой потери с sqrt. (class_weights). 2 для взвешаемой потери с class_weights. Должно быть 0 или 1 или 2. |
струна |
ImageModelDistributionSettingsObjectDetection
Имя | Описание | Ценность |
---|---|---|
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | струна |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
boxDetectionsPerImage | Максимальное количество обнаружений на изображение для всех классов. Должно быть положительным целым числом. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
boxScoreThreshold | Во время вывода возвращаются только предложения с оценкой классификации больше, чем BoxScoreThreshold. Должен быть плавающей запятой в диапазоне[0, 1]. |
струна |
распределённый | Следует ли использовать обучение распространителя. | струна |
earlyStopping | Включите логику раннего остановки во время обучения. | струна |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
струна |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
струна |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | струна |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | струна |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
струна |
imageSize | Размер изображения для обучения и проверки. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
струна |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
струна |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | струна |
maxSize | Максимальный размер изображения для перемасштабирования перед его добавлением в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
minSize | Минимальный размер изображения, который необходимо перемасштабировать, прежде чем передавать его в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
modelSize | Размер модели. Должен быть "маленький", "средний", "большой" или "xlarge". Примечание. Учебный запуск может попасть в OOM CUDA, если размер модели слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
струна |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
MultiScale | Включите многомасштабное изображение, изменив размер изображения по +/-50%. Примечание. Учебный запуск может попасть в OOM CUDA, если недостаточно памяти GPU. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
струна |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | струна |
nmsIouThreshold | Пороговое значение ввода-вывода, используемое во время вывода в процессе последующей обработки NMS. Должен быть плавать в диапазоне [0, 1]. | струна |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | струна |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | струна |
оптимизатор | Тип оптимизатора. Должно быть либо "хем", "адам", либо "адам". | струна |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | струна |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | струна |
tileGridSize | Размер сетки, используемый для размещения каждого изображения. Примечание. TileGridSize не должно быть Нет, чтобы включить логику обнаружения небольших объектов. Строка, содержащая два целых числа в формате mxn. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
tileOverlapRatio | Коэффициент перекрытия между смежными плитками в каждом измерении. Должен быть плавать в диапазоне [0, 1). Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
tilePredictionsNmsThreshold | Пороговое значение IOU для выполнения NMS при слиянии прогнозов из плиток и изображений. Используется в проверке или выводе. Должен быть плавать в диапазоне [0, 1]. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. NMS: не максимальное подавление |
струна |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | струна |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | струна |
validationIouThreshold | Пороговое значение IOU для использования при вычислении метрики проверки. Должен быть плавать в диапазоне [0, 1]. | струна |
validationMetricType | Метод вычисления метрик, используемый для метрик проверки. Должно быть "none", "coco", "voc" или "coco_voc". | струна |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | струна |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | струна |
ImageModelSettingsClassification
Имя | Описание | Ценность |
---|---|---|
advancedSettings | Параметры для расширенных сценариев. | струна |
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | bool |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
контрольная точкаFrequency | Частота хранения контрольных точек модели. Должно быть положительным целым числом. | int |
контрольная точкаModel | Предварительно обученная модель контрольной точки для добавочного обучения. | MLFlowModelJobInput |
контрольная точкаRunId | Идентификатор предыдущего запуска с предварительно обученной контрольной точкой для добавочного обучения. | струна |
распределённый | Следует ли использовать распределенное обучение. | bool |
earlyStopping | Включите логику раннего остановки во время обучения. | bool |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
int |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
int |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | bool |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | int |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
int |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
int |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | int |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | "Нет" Шаг "WarmupCosine" |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | bool |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | int |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | int |
оптимизатор | Тип оптимизатора. | "Адам" "Адамв" "Нет" "Хем" |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | int |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | int |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | int |
trainingCropSize | Размер обрезки изображения, входной в нейронную сеть для обучающего набора данных. Должно быть положительным целым числом. | int |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | int |
validationCropSize | Размер обрезки изображения, входной в нейронную сеть для набора данных проверки. Должно быть положительным целым числом. | int |
validationResizeSize | Размер изображения, в который необходимо изменить размер перед обрезкой для набора данных проверки. Должно быть положительным целым числом. | int |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | int |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | int |
весеedLoss | Весовая потеря. Допустимые значения — 0 без потери веса. 1 для взвешаемой потери с sqrt. (class_weights). 2 для взвешаемой потери с class_weights. Должно быть 0 или 1 или 2. |
int |
ImageModelSettingsObjectDetection
Имя | Описание | Ценность |
---|---|---|
advancedSettings | Параметры для расширенных сценариев. | струна |
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | bool |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
boxDetectionsPerImage | Максимальное количество обнаружений на изображение для всех классов. Должно быть положительным целым числом. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
boxScoreThreshold | Во время вывода возвращаются только предложения с оценкой классификации больше, чем BoxScoreThreshold. Должен быть плавающей запятой в диапазоне[0, 1]. |
int |
контрольная точкаFrequency | Частота хранения контрольных точек модели. Должно быть положительным целым числом. | int |
контрольная точкаModel | Предварительно обученная модель контрольной точки для добавочного обучения. | MLFlowModelJobInput |
контрольная точкаRunId | Идентификатор предыдущего запуска с предварительно обученной контрольной точкой для добавочного обучения. | струна |
распределённый | Следует ли использовать распределенное обучение. | bool |
earlyStopping | Включите логику раннего остановки во время обучения. | bool |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
int |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
int |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | bool |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | int |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
int |
imageSize | Размер изображения для обучения и проверки. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
int |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
int |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | int |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | "Нет" Шаг "WarmupCosine" |
maxSize | Максимальный размер изображения для перемасштабирования перед его добавлением в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
minSize | Минимальный размер изображения, который необходимо перемасштабировать, прежде чем передавать его в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
modelSize | Размер модели. Должен быть "маленький", "средний", "большой" или "xlarge". Примечание. Учебный запуск может попасть в OOM CUDA, если размер модели слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
'ExtraLarge' "Большой" "Средний" "Нет" "Маленький" |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
MultiScale | Включите многомасштабное изображение, изменив размер изображения по +/-50%. Примечание. Учебный запуск может попасть в OOM CUDA, если недостаточно памяти GPU. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
bool |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | bool |
nmsIouThreshold | Пороговое значение ввода-вывода, используемое во время вывода в процессе последующей обработки NMS. Должен быть плавающей запятой в диапазоне [0, 1]. | int |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | int |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | int |
оптимизатор | Тип оптимизатора. | "Адам" "Адамв" "Нет" "Хем" |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | int |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | int |
tileGridSize | Размер сетки, используемый для размещения каждого изображения. Примечание. TileGridSize не должно быть Нет, чтобы включить логику обнаружения небольших объектов. Строка, содержащая два целых числа в формате mxn. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
tileOverlapRatio | Коэффициент перекрытия между смежными плитками в каждом измерении. Должен быть плавать в диапазоне [0, 1). Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
tilePredictionsNmsThreshold | Пороговое значение IOU для выполнения NMS при слиянии прогнозов из плиток и изображений. Используется в проверке или выводе. Должен быть плавать в диапазоне [0, 1]. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | int |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | int |
validationIouThreshold | Пороговое значение IOU для использования при вычислении метрики проверки. Должен быть плавать в диапазоне [0, 1]. | int |
validationMetricType | Метод вычисления метрик, используемый для метрик проверки. | "Коко" 'CocoVoc' "Нет" "Voc" |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | int |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | int |
ImageObjectDetection
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsObjectDetection |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "MeanAveragePrecision" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageObjectDetection (обязательно) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageSweepSettings
Имя | Описание | Ценность |
---|---|---|
ранняятерминация | Тип политики раннего завершения. | EarlyTerminationPolicy |
выборкаAlgorithm | [Обязательный] Тип алгоритмов выборки гиперпараметров. | "Байезиан" "Сетка" "Случайный" (обязательный) |
JobBaseProperties
Имя | Описание | Ценность |
---|---|---|
componentId | Идентификатор ресурса ARM ресурса компонента. | струна |
computeId | Идентификатор ресурса ARM вычислительного ресурса. | струна |
описание | Текст описания ресурса. | струна |
displayName | Отображаемое имя задания. | струна |
experimentName | Имя эксперимента, к которому принадлежит задание. Если задание не задано, задание помещается в эксперимент по умолчанию. | струна |
тождество | Конфигурация удостоверения. Если задано, это должен быть один из AmlToken, ManagedIdentity, UserIdentity или NULL. По умолчанию AmlToken имеет значение NULL. |
IdentityConfiguration |
isArchived | Архивируется ли ресурс? | bool |
jobType | Установите значение AutoML для типа AutoMLJob. Задайте для типа command CommandJob. Установите значение Pipeline для типа PipelineJob. Установите значение "Sweep" для типа SweepJob. | AutoML "Command" Конвейер "Очистка" (обязательно) |
свойства | Словарь свойств ресурса. | ResourceBaseProperties |
Услуги | Список заданий. Для локальных заданий конечная точка задания будет иметь значение конечной точки FileStreamObject. |
JobBaseServices |
Теги | Словарь тегов. Теги можно добавлять, удалять и обновлять. | ResourceBaseTags |
JobBaseServices
Имя | Описание | Ценность |
---|
JobInput
Имя | Описание | Ценность |
---|---|---|
описание | Описание входных данных. | струна |
jobInputType | Установите значение "custom_model" для типа CustomModelJobInput. Задайте значение "литерал" для типа LiteralJobInput. Установите значение "mlflow_model" для типа MLFlowModelJobInput. Установите значение mltable для типа MLTableJobInput. Установите значение "triton_model" для типа TritonModelJobInput. Установите значение "uri_file" для типа UriFileJobInput. Установите значение "uri_folder" для типа UriFolderJobInput. | "custom_model" "литерал" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
JobOutput
Имя | Описание | Ценность |
---|---|---|
описание | Описание выходных данных. | струна |
jobOutputType | Установите значение "custom_model" для типа CustomModelJobOutput. Установите значение "mlflow_model" для типа MLFlowModelJobOutput. Установите значение mltable для типа MLTableJobOutput. Установите значение "triton_model" для типа TritonModelJobOutput. Установите значение "uri_file" для типа UriFileJobOutput. Установите значение "uri_folder" для типа UriFolderJobOutput. | "custom_model" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
JobResourceConfiguration
Имя | Описание | Ценность |
---|---|---|
dockerArgs | Дополнительные аргументы для передачи команде запуска Docker. Это переопределит все параметры, которые уже были заданы системой или в этом разделе. Этот параметр поддерживается только для типов вычислений Машинного обучения Azure. | струна |
instanceCount | Необязательное количество экземпляров или узлов, используемых целевым объектом вычислений. | int |
instanceType | Необязательный тип виртуальной машины, используемой в качестве поддержки целевого объекта вычислений. | струна |
свойства | Дополнительные контейнеры свойств. | ResourceConfigurationProperties |
shmSize | Размер общего блока памяти контейнера Docker. Это должно быть в формате (число)(единица), где число должно быть больше 0, а единица может быть одной из b(байтов), k(килобайтов), m(мегабайт) или g(g(gigabytes). | струна Ограничения целостности: Pattern = \d+[bBkKmMgG] |
JobScheduleAction
Имя | Описание | Ценность |
---|---|---|
actionType | [Обязательный] Указывает тип действия расписания | CreateJob (обязательный) |
jobDefinition | [Обязательный] Определяет сведения о определении действия расписания. | JobBaseProperties (обязательно) |
JobService
Имя | Описание | Ценность |
---|---|---|
конечная точка | URL-адрес конечной точки. | струна |
jobServiceType | Тип конечной точки. | струна |
Узлов | Узлы, на которые пользователь хочет запустить службу. Если узлы не заданы или заданы значение NULL, служба будет запущена только на узле лидера. |
узлов |
порт | Порт для конечной точки. | int |
свойства | Дополнительные свойства, заданные в конечной точке. | JobServiceProperties |
JobServiceProperties
Имя | Описание | Ценность |
---|
ЛитералJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "литерал" (обязательный) |
ценность | [Обязательный] Литеральное значение для входных данных. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
ManagedIdentity
Имя | Описание | Ценность |
---|---|---|
clientId | Указывает назначаемое пользователем удостоверение по идентификатору клиента. Для назначаемого системой не устанавливайте это поле. | струна Ограничения целостности: Минимальная длина = 36 Максимальная длина = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
identityType | [Обязательный] Указывает тип платформы удостоверений. | Managed (обязательный) |
objectId | Указывает назначаемое пользователем удостоверение по идентификатору объекта. Для назначаемого системой не устанавливайте это поле. | струна Ограничения целостности: Минимальная длина = 36 Максимальная длина = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
resourceId | Указывает удостоверение, назначаемое пользователем, по идентификатору ресурса ARM. Для назначаемого системой не устанавливайте это поле. | струна |
MedianStoppingPolicy
Имя | Описание | Ценность |
---|---|---|
policyType | [Обязательный] Имя конфигурации политики | MedianStopping (обязательно) |
Microsoft.MachineLearningServices/workspaces/schedules
Имя | Описание | Ценность |
---|---|---|
apiVersion | Версия API | '2023-04-01' |
имя | Имя ресурса | струна Ограничения целостности: Pattern = ^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$ (обязательно) |
свойства | [Обязательный] Дополнительные атрибуты сущности. | ScheduleProperties (обязательно) |
тип | Тип ресурса | "Microsoft.MachineLearningServices/workspaces/schedules" |
MLFlowModelJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "mlflow_model" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLFlowModelJobInput
Имя | Описание | Ценность |
---|---|---|
описание | Описание входных данных. | струна |
jobInputType | [Обязательный] Указывает тип задания. | "custom_model" "литерал" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLFlowModelJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "mlflow_model" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
MLTableJobInput
Имя | Описание | Ценность |
---|---|---|
описание | Описание входных данных. | струна |
jobInputType | [Обязательный] Указывает тип задания. | "custom_model" "литерал" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLTableJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "mltable" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLTableJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "mltable" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
Mpi
Имя | Описание | Ценность |
---|---|---|
distributionType | [Обязательный] Указывает тип платформы распространения. | Mpi (обязательно) |
processCountPerInstance | Количество процессов на узел MPI. | int |
NCrossValidations
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoNCrossValidations. Установите значение Custom для типа CustomNCrossValidations. | "Авто" "Custom" (обязательный) |
NlpVerticalFeaturizationSettings
Имя | Описание | Ценность |
---|---|---|
datasetLanguage | Язык набора данных, полезный для текстовых данных. | струна |
NlpVerticalLimitSettings
Имя | Описание | Ценность |
---|---|---|
maxConcurrentTrials | Максимальное число параллельных итераций AutoML. | int |
maxTrials | Число итераций AutoML. | int |
Времени ожидания | Время ожидания задания AutoML. | струна |
Узлов
Имя | Описание | Ценность |
---|---|---|
nodesValueType | Установите значение All для типа AllNodes. | "Все" (обязательно) |
Объективный
Имя | Описание | Ценность |
---|---|---|
цель | [Обязательный] Определяет поддерживаемые цели метрик для настройки гиперпараметров | "Развернуть" "Свернуть" (обязательно) |
primaryMetric | [Обязательный] Имя метрики для оптимизации. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
PipelineJob
Имя | Описание | Ценность |
---|---|---|
Входы | Входные данные для задания конвейера. | PipelineJobInputs |
Рабочих мест | Задания создают задание конвейера. | PipelineJobJobs |
jobType | [Обязательный] Указывает тип задания. | Pipeline (обязательный) |
Выходы | Выходные данные для задания конвейера | PipelineJobOutputs |
Параметры | Параметры конвейера, например ContinueRunOnStepFailure и т. д. | любой |
sourceJobId | Идентификатор ресурса ARM исходного задания. | струна |
PipelineJobInputs
Имя | Описание | Ценность |
---|
PipelineJobJobs
Имя | Описание | Ценность |
---|
PipelineJobOutputs
Имя | Описание | Ценность |
---|
PyTorch
Имя | Описание | Ценность |
---|---|---|
distributionType | [Обязательный] Указывает тип платформы распространения. | PyTorch (обязательный) |
processCountPerInstance | Количество процессов на узел. | int |
RandomSamplingAlgorithm
Имя | Описание | Ценность |
---|---|---|
правило | Конкретный тип случайного алгоритма | "Случайный" 'Sobol' |
выборкаAlgorithmType | [Обязательный] Алгоритм, используемый для создания значений гиперпараметров, а также свойств конфигурации | "Случайный" (обязательный) |
семя | Необязательное целое число, используемое в качестве начального значения для случайного создания чисел | int |
ПовторениеSchedule
Имя | Описание | Ценность |
---|---|---|
Часов | [Обязательный] Список часов для расписания. | int[] (обязательно) |
протокол | [Обязательный] Список минут для расписания. | int[] (обязательно) |
monthDays | Список дней месяца для расписания | int[] |
будни | Список дней для расписания. | Массив строк, содержащий любой из: "Пятница" "Понедельник" "Суббота" "Воскресенье" "Четверг" "Вторник" "Среда" |
ПовторениеTrigger
Имя | Описание | Ценность |
---|---|---|
частота | [Обязательный] Частота запуска расписания. | "День" "Час" "Минута" "Месяц" "Неделя" (обязательно) |
интервал | [Обязательный] Указывает интервал расписания в сочетании с частотой | int (обязательно) |
расписание | Расписание повторения. | ПовторениеSchedule |
triggerType | [Обязательный] | "Повторение" (обязательно) |
Регрессия
Имя | Описание | Ценность |
---|---|---|
cvSplitColumnNames | Столбцы, используемые для данных CVSplit. | string[] |
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | TableVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Количество сверток перекрестной проверки, применяемых к набору данных для обучения Если набор данных проверки не указан. |
NCrossValidations |
primaryMetric | Основная метрика для задачи регрессии. | "NormalizedMeanAbsoluteError" "NormalizedRootMeanSquaredError" "R2Score" 'SpearmanCorrelation' |
taskType | [Обязательный] Тип задачи для AutoMLJob. | Регрессия (обязательно) |
testData | Проверка входных данных. | MLTableJobInput |
testDataSize | Доля тестового набора данных, который необходимо отложить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
trainingSettings | Входные данные для этапа обучения для задания AutoML. | РегрессионTrainingSettings |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
weightColumnName | Имя столбца веса образца. Автоматизированное машинное обучение поддерживает взвешанный столбец в качестве входных данных, что приводит к тому, что строки в данных будут взвешированы вверх или вниз. | струна |
РегрессияTrainingSettings
Имя | Описание | Ценность |
---|---|---|
allowedTrainingAlgorithms | Разрешенные модели для задачи регрессии. | Массив строк, содержащий любой из: "DecisionTree" ElasticNet "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "RandomForest" "ДИНАМ" "XGBoostRegressor" |
blockedTrainingAlgorithms | Заблокированные модели для задачи регрессии. | Массив строк, содержащий любой из: "DecisionTree" ElasticNet "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "RandomForest" "ДИНАМ" "XGBoostRegressor" |
enableDnnTraining | Включите рекомендацию моделей DNN. | bool |
enableModelExplainability | Пометка для включения объяснимости для оптимальной модели. | bool |
enableOnnxCompatibleModels | Флаг включения совместимых моделей onnx. | bool |
enableStackEnsemble | Включите запуск ансамбля стека. | bool |
enableVoteEnsemble | Включите запуск ансамбля голосования. | bool |
ensembleModelDownloadTimeout | Во время создания модели VotingEnsemble и StackEnsemble скачиваются несколько встроенных моделей из предыдущих дочерних запусков. Настройте этот параметр с более высоким значением, чем 300 с, если требуется больше времени. |
струна |
stackEnsembleSettings | Параметры ансамбля стека для выполнения ансамбля стека. | StackEnsembleSettings |
ResourceBaseProperties
Имя | Описание | Ценность |
---|
ResourceBaseProperties
Имя | Описание | Ценность |
---|
ResourceBaseTags
Имя | Описание | Ценность |
---|
ResourceBaseTags
Имя | Описание | Ценность |
---|
ResourceConfigurationProperties
Имя | Описание | Ценность |
---|
ВыборкаAlgorithm
Имя | Описание | Ценность |
---|---|---|
выборкаAlgorithmType | Установите значение Bayesian для типа BayesianSamplingAlgorithm. Установите значение Grid для типа GridSamplingAlgorithm. Установите значение Random для типа RandomSamplingAlgorithm. | "Байезиан" "Сетка" "Случайный" (обязательный) |
ScheduleActionBase
Имя | Описание | Ценность |
---|---|---|
actionType | Установите значение CreateJob для типа JobScheduleAction. Установите значение InvokeBatchEndpoint для типа EndpointScheduleAction. | CreateJob InvokeBatchEndpoint (обязательно) |
ScheduleProperties
Имя | Описание | Ценность |
---|---|---|
действие | [Обязательный] Указывает действие расписания | ScheduleActionBase (обязательно) |
описание | Текст описания ресурса. | струна |
displayName | Отображаемое имя расписания. | струна |
isEnabled | Включен ли расписание? | bool |
свойства | Словарь свойств ресурса. | ResourceBaseProperties |
Теги | Словарь тегов. Теги можно добавлять, удалять и обновлять. | ResourceBaseTags |
триггер | [Обязательный] Указывает сведения о триггере | TriggerBase (обязательно) |
Сезонность
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа autoSeasonality. Установите значение Custom для типа CustomSeasonality. | "Авто" "Custom" (обязательный) |
StackEnsembleSettings
Имя | Описание | Ценность |
---|---|---|
stackMetaLearnerKWargs | Необязательные параметры для передачи инициализатору метаучителя. | любой |
stackMetaLearnerTrainPercentage | Указывает пропорцию обучающего набора (при выборе типа обучения и проверки обучения), зарезервированного для обучения метаучителя. Значение по умолчанию — 0.2. | int |
stackMetaLearnerType | Метаобучатель — это модель, обученная на выходных данных отдельных разнородных моделей. | ElasticNet "ElasticNetCV" LightGBMClassifier LightGBMRegressor "LinearRegression" "LogisticRegression" "LogisticRegressionCV" "Нет" |
SweepJob
Имя | Описание | Ценность |
---|---|---|
ранняятерминация | Политики раннего завершения позволяют отменять низкопроизводительные запуски до их завершения | EarlyTerminationPolicy |
Входы | Сопоставление входных привязок данных, используемых в задании. | SweepJobInputs |
jobType | [Обязательный] Указывает тип задания. | "Очистка" (обязательно) |
Ограничения | Ограничение задания очистки. | SweepJobLimits |
объективный | [Обязательный] Цель оптимизации. | Objective (обязательно) |
Выходы | Сопоставление привязок выходных данных, используемых в задании. | |
выборкаAlgorithm | [Обязательный] Алгоритм выборки гиперпараметров | ВыборкаAlgorithm (обязательно) |
searchSpace | [Обязательный] Словарь, содержащий каждый параметр и его распределение. Ключ словаря — это имя параметра | любой (обязательный) |
испытание | [Обязательный] Определение компонента пробной версии. | TrialComponent (обязательно) |
SweepJobInputs
Имя | Описание | Ценность |
---|
SweepJobLimits
Имя | Описание | Ценность |
---|---|---|
jobLimitsType | [Обязательный] Тип JobLimit. | "Command" "Очистка" (обязательно) |
maxConcurrentTrials | Максимальное число параллельных пробных версий задания очистки. | int |
maxTotalTrials | Максимальное количество пробных версий заданий для очистки. | int |
Времени ожидания | Максимальная длительность выполнения в формате ISO 8601, после которой задание будет отменено. Поддерживается только длительность с точностью до секунд. | струна |
trialTimeout | Значение времени ожидания пробной версии задания подметки. | струна |
SweepJobOutputs
Имя | Описание | Ценность |
---|
TableVerticalFeaturizationSettings
Имя | Описание | Ценность |
---|---|---|
заблокированныеTransformers | Эти преобразователи не должны использоваться в признаках. | Массив строк, содержащий любой из: "CatTargetEncoder" CountVectorizer HashOneHotEncoder 'LabelEncoder' 'NaiveBayes' OneHotEncoder TextTargetEncoder 'TfIdf' 'WoETargetEncoder' "WordEmbedding" |
columnNameAndTypes | Словарь имени столбца и его типа (int, float, string, datetime и т. д.). | TableVerticalFeaturizationSettingsColumnNameAndTypes |
datasetLanguage | Язык набора данных, полезный для текстовых данных. | струна |
enableDnnFeaturization | Определяет, следует ли использовать признаки на основе Dnn для признаков данных. | bool |
режим | Режим признаков . Пользователь может сохранить режим авто по умолчанию, и AutoML будет заботиться о необходимом преобразовании данных на этапе признаков. Если выбрано значение "Выкл.", то нет признаков. Если выбран параметр Custom, пользователь может указать дополнительные входные данные, чтобы настроить способ выполнения признаков. |
"Авто" "Custom" "Выкл. |
преобразовательParams | Пользователь может указать дополнительные преобразователи, которые будут использоваться вместе со столбцами, к которым он будет применяться, и параметрами для конструктора преобразователя. | TableVerticalFeaturizationSettingsTransformerParams |
TableVerticalFeaturizationSettingsColumnNameAndTypes
Имя | Описание | Ценность |
---|
TableVerticalFeaturizationSettingsTransformerParams
Имя | Описание | Ценность |
---|
TableVerticalLimitSettings
Имя | Описание | Ценность |
---|---|---|
enableEarlyTermination | Включите досрочное завершение, определяет, будет ли autoMLJob завершаться рано, если в последних 20 итерациях не будет улучшена оценка. | bool |
exitScore | Оценка выхода для задания AutoML. | int |
maxConcurrentTrials | Максимальное число одновременных итераций. | int |
maxCoresPerTrial | Максимальное число ядер на итерацию. | int |
maxTrials | Количество итераций. | int |
Времени ожидания | Время ожидания задания AutoML. | струна |
trialTimeout | Время ожидания итерации. | струна |
TargetLags
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoTargetLags. Установите значение Custom для типа CustomTargetLags. | "Авто" "Custom" (обязательный) |
TargetRollingWindowSize
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoTargetRollingWindowSize. Установите значение Custom для типа CustomTargetRollingWindowSize. | "Авто" "Custom" (обязательный) |
TensorFlow
Имя | Описание | Ценность |
---|---|---|
distributionType | [Обязательный] Указывает тип платформы распространения. | TensorFlow (обязательный) |
parameterServerCount | Количество задач сервера параметров. | int |
workerCount | Число рабочих ролей. Если этот параметр не указан, по умолчанию используется число экземпляров. | int |
TextClassification
Имя | Описание | Ценность |
---|---|---|
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | NlpVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | NlpVerticalLimitSettings |
primaryMetric | Основная метрика для задачи Text-Classification. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
taskType | [Обязательный] Тип задачи для AutoMLJob. | TextClassification (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
TextClassificationMultilabel
Имя | Описание | Ценность |
---|---|---|
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | NlpVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | NlpVerticalLimitSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | TextClassificationMultilabel (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
TextNer
Имя | Описание | Ценность |
---|---|---|
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | NlpVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | NlpVerticalLimitSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | TextNER (обязательно) |
validationData | Входные данные проверки. | MLTableJobInput |
TrialComponent
Имя | Описание | Ценность |
---|---|---|
codeId | Идентификатор ресурса ARM ресурса ресурса кода. | струна |
команда | [Обязательный] Команда, выполняемая при запуске задания. Например. "Python train.py" | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
распределение | Конфигурация распределения задания. Если задано, это должен быть один из Mpi, Tensorflow, PyTorch или NULL. | distributionConfiguration |
environmentId | [Обязательный] Идентификатор ресурса ARM спецификации среды для задания. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
environmentVariables | Переменные среды, включенные в задание. | TrialComponentEnvironmentVariables |
ресурсы | Конфигурация вычислительных ресурсов для задания. | JobResourceConfiguration |
TrialComponentEnvironmentVariables
Имя | Описание | Ценность |
---|
TriggerBase
Имя | Описание | Ценность |
---|---|---|
endTime | Указывает время окончания расписания в ISO 8601, но без смещения в формате UTC. См. https://en.wikipedia.org/wiki/ISO_8601. Формат перекомментированного формата будет "2022-06-01T00:00:01" Если это не так, расписание будет выполняться на неопределенный срок |
струна |
startTime | Указывает время начала расписания в формате ISO 8601, но без смещения в формате UTC. | струна |
часовой пояс | Указывает часовой пояс, в котором выполняется расписание. Часовой пояс Должен соответствовать формату часового пояса Windows. Ссылка: /windows-hardware/manufacture/desktop/default-time-zones?view=windows-11 |
струна |
triggerType | Установите значение Cron для типа CronTrigger. Установите значение "Повторение" для типа повторения. | "Cron" "Повторение" (обязательно) |
TritonModelJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "triton_model" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
TritonModelJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "triton_model" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
УсечениеSelectionPolicy
Имя | Описание | Ценность |
---|---|---|
policyType | [Обязательный] Имя конфигурации политики | УсечениеSelection (обязательно) |
усечениеPercentage | Процент выполнения для отмены по каждому интервалу оценки. | int |
UriFileJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "uri_file" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
UriFileJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "uri_file" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
UriFolderJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "uri_folder" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
UriFolderJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "uri_folder" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
UserIdentity
Имя | Описание | Ценность |
---|---|---|
identityType | [Обязательный] Указывает тип платформы удостоверений. | UserIdentity (обязательно) |
Примеры использования
Определение ресурса Terraform (поставщик AzAPI)
Тип ресурса рабочих областей и расписаний можно развернуть с помощью операций, предназначенных для следующих операций:
- групп ресурсов
Список измененных свойств в каждой версии API см. в журнала изменений.
Формат ресурса
Чтобы создать ресурс Microsoft.MachineLearningServices/workspaces/schedules, добавьте следующий объект Terraform в шаблон.
resource "azapi_resource" "symbolicname" {
type = "Microsoft.MachineLearningServices/workspaces/schedules@2023-04-01"
name = "string"
body = jsonencode({
properties = {
action = {
actionType = "string"
// For remaining properties, see ScheduleActionBase objects
}
description = "string"
displayName = "string"
isEnabled = bool
properties = {
{customized property} = "string"
}
tags = {
{customized property} = "string"
}
trigger = {
endTime = "string"
startTime = "string"
timeZone = "string"
triggerType = "string"
// For remaining properties, see TriggerBase objects
}
}
})
}
Объекты ScheduleActionBase
Задайте свойство actionType, чтобы указать тип объекта.
Для CreateJobиспользуйте:
{
actionType = "CreateJob"
jobDefinition = {
componentId = "string"
computeId = "string"
description = "string"
displayName = "string"
experimentName = "string"
identity = {
identityType = "string"
// For remaining properties, see IdentityConfiguration objects
}
isArchived = bool
properties = {
{customized property} = "string"
}
services = {
{customized property} = {
endpoint = "string"
jobServiceType = "string"
nodes = {
nodesValueType = "string"
// For remaining properties, see Nodes objects
}
port = int
properties = {
{customized property} = "string"
}
}
}
tags = {
{customized property} = "string"
}
jobType = "string"
// For remaining properties, see JobBaseProperties objects
}
}
Для InvokeBatchEndpointиспользуйте:
{
actionType = "InvokeBatchEndpoint"
endpointInvocationDefinition = ?
}
Объекты EarlyTerminationPolicy
Задайте свойство policyType, чтобы указать тип объекта.
Для Banditиспользуйте:
{
policyType = "Bandit"
slackAmount = int
slackFactor = int
}
Для MedianStoppingиспользуйте:
{
policyType = "MedianStopping"
}
Для TruncationSelectionиспользуйте:
{
policyType = "TruncationSelection"
truncationPercentage = int
}
Объекты сезонности
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
mode = "Auto"
}
Для пользовательских
{
mode = "Custom"
value = int
}
Объекты ForecastHorizon
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
mode = "Auto"
}
Для пользовательских
{
mode = "Custom"
value = int
}
Объекты ВыборкиAlgorithm
Задайте свойство выборкиAlgorithmType, чтобы указать тип объекта.
Для Байезианаиспользуйте:
{
samplingAlgorithmType = "Bayesian"
}
Для сеткииспользуйте:
{
samplingAlgorithmType = "Grid"
}
Для случайныхиспользуйте:
{
rule = "string"
samplingAlgorithmType = "Random"
seed = int
}
Объекты JobBaseProperties
Задайте свойство jobType, чтобы указать тип объекта.
Для AutoMLиспользуйте:
{
environmentId = "string"
environmentVariables = {
{customized property} = "string"
}
jobType = "AutoML"
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
resources = {
dockerArgs = "string"
instanceCount = int
instanceType = "string"
properties = {
{customized property} = ?
}
shmSize = "string"
}
taskDetails = {
logVerbosity = "string"
targetColumnName = "string"
trainingData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
taskType = "string"
// For remaining properties, see AutoMLVertical objects
}
}
Для команды используйте следующую команду:
{
codeId = "string"
command = "string"
distribution = {
distributionType = "string"
// For remaining properties, see DistributionConfiguration objects
}
environmentId = "string"
environmentVariables = {
{customized property} = "string"
}
inputs = {
{customized property} = {
description = "string"
jobInputType = "string"
// For remaining properties, see JobInput objects
}
}
jobType = "Command"
limits = {
jobLimitsType = "string"
timeout = "string"
}
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
resources = {
dockerArgs = "string"
instanceCount = int
instanceType = "string"
properties = {
{customized property} = ?
}
shmSize = "string"
}
}
Для конвейераиспользуйте:
{
inputs = {
{customized property} = {
description = "string"
jobInputType = "string"
// For remaining properties, see JobInput objects
}
}
jobs = {
{customized property} = ?
}
jobType = "Pipeline"
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
settings = ?
sourceJobId = "string"
}
Для
{
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
inputs = {
{customized property} = {
description = "string"
jobInputType = "string"
// For remaining properties, see JobInput objects
}
}
jobType = "Sweep"
limits = {
jobLimitsType = "string"
maxConcurrentTrials = int
maxTotalTrials = int
timeout = "string"
trialTimeout = "string"
}
objective = {
goal = "string"
primaryMetric = "string"
}
outputs = {
{customized property} = {
description = "string"
jobOutputType = "string"
// For remaining properties, see JobOutput objects
}
}
samplingAlgorithm = {
samplingAlgorithmType = "string"
// For remaining properties, see SamplingAlgorithm objects
}
searchSpace = ?
trial = {
codeId = "string"
command = "string"
distribution = {
distributionType = "string"
// For remaining properties, see DistributionConfiguration objects
}
environmentId = "string"
environmentVariables = {
{customized property} = "string"
}
resources = {
dockerArgs = "string"
instanceCount = int
instanceType = "string"
properties = {
{customized property} = ?
}
shmSize = "string"
}
}
}
Объекты JobOutput
Задайте свойство jobOutputType, чтобы указать тип объекта.
Для custom_modelиспользуйте:
{
jobOutputType = "custom_model"
mode = "string"
uri = "string"
}
Для mlflow_modelиспользуйте:
{
jobOutputType = "mlflow_model"
mode = "string"
uri = "string"
}
Для mltableиспользуйте:
{
jobOutputType = "mltable"
mode = "string"
uri = "string"
}
Для triton_modelиспользуйте:
{
jobOutputType = "triton_model"
mode = "string"
uri = "string"
}
Для uri_fileиспользуйте:
{
jobOutputType = "uri_file"
mode = "string"
uri = "string"
}
Для uri_folderиспользуйте:
{
jobOutputType = "uri_folder"
mode = "string"
uri = "string"
}
Объекты TargetRollingWindowSize
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
mode = "Auto"
}
Для пользовательских
{
mode = "Custom"
value = int
}
Объекты AutoMLVertical
Задайте свойство taskType, чтобы указать тип объекта.
Для классификациииспользуйте:
{
cvSplitColumnNames = [
"string"
]
featurizationSettings = {
blockedTransformers = [
"string"
]
columnNameAndTypes = {
{customized property} = "string"
}
datasetLanguage = "string"
enableDnnFeaturization = bool
mode = "string"
transformerParams = {
{customized property} = [
{
fields = [
"string"
]
parameters = ?
}
]
}
}
limitSettings = {
enableEarlyTermination = bool
exitScore = int
maxConcurrentTrials = int
maxCoresPerTrial = int
maxTrials = int
timeout = "string"
trialTimeout = "string"
}
nCrossValidations = {
mode = "string"
// For remaining properties, see NCrossValidations objects
}
positiveLabel = "string"
primaryMetric = "string"
taskType = "Classification"
testData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
testDataSize = int
trainingSettings = {
allowedTrainingAlgorithms = [
"string"
]
blockedTrainingAlgorithms = [
"string"
]
enableDnnTraining = bool
enableModelExplainability = bool
enableOnnxCompatibleModels = bool
enableStackEnsemble = bool
enableVoteEnsemble = bool
ensembleModelDownloadTimeout = "string"
stackEnsembleSettings = {
stackMetaLearnerKWargs = ?
stackMetaLearnerTrainPercentage = int
stackMetaLearnerType = "string"
}
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
weightColumnName = "string"
}
Для прогнозированияиспользуйте:
{
cvSplitColumnNames = [
"string"
]
featurizationSettings = {
blockedTransformers = [
"string"
]
columnNameAndTypes = {
{customized property} = "string"
}
datasetLanguage = "string"
enableDnnFeaturization = bool
mode = "string"
transformerParams = {
{customized property} = [
{
fields = [
"string"
]
parameters = ?
}
]
}
}
forecastingSettings = {
countryOrRegionForHolidays = "string"
cvStepSize = int
featureLags = "string"
forecastHorizon = {
mode = "string"
// For remaining properties, see ForecastHorizon objects
}
frequency = "string"
seasonality = {
mode = "string"
// For remaining properties, see Seasonality objects
}
shortSeriesHandlingConfig = "string"
targetAggregateFunction = "string"
targetLags = {
mode = "string"
// For remaining properties, see TargetLags objects
}
targetRollingWindowSize = {
mode = "string"
// For remaining properties, see TargetRollingWindowSize objects
}
timeColumnName = "string"
timeSeriesIdColumnNames = [
"string"
]
useStl = "string"
}
limitSettings = {
enableEarlyTermination = bool
exitScore = int
maxConcurrentTrials = int
maxCoresPerTrial = int
maxTrials = int
timeout = "string"
trialTimeout = "string"
}
nCrossValidations = {
mode = "string"
// For remaining properties, see NCrossValidations objects
}
primaryMetric = "string"
taskType = "Forecasting"
testData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
testDataSize = int
trainingSettings = {
allowedTrainingAlgorithms = [
"string"
]
blockedTrainingAlgorithms = [
"string"
]
enableDnnTraining = bool
enableModelExplainability = bool
enableOnnxCompatibleModels = bool
enableStackEnsemble = bool
enableVoteEnsemble = bool
ensembleModelDownloadTimeout = "string"
stackEnsembleSettings = {
stackMetaLearnerKWargs = ?
stackMetaLearnerTrainPercentage = int
stackMetaLearnerType = "string"
}
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
weightColumnName = "string"
}
Для ImageClassificationиспользуйте:
{
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
modelSettings = {
advancedSettings = "string"
amsGradient = bool
augmentations = "string"
beta1 = int
beta2 = int
checkpointFrequency = int
checkpointModel = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
checkpointRunId = "string"
distributed = bool
earlyStopping = bool
earlyStoppingDelay = int
earlyStoppingPatience = int
enableOnnxNormalization = bool
evaluationFrequency = int
gradientAccumulationStep = int
layersToFreeze = int
learningRate = int
learningRateScheduler = "string"
modelName = "string"
momentum = int
nesterov = bool
numberOfEpochs = int
numberOfWorkers = int
optimizer = "string"
randomSeed = int
stepLRGamma = int
stepLRStepSize = int
trainingBatchSize = int
trainingCropSize = int
validationBatchSize = int
validationCropSize = int
validationResizeSize = int
warmupCosineLRCycles = int
warmupCosineLRWarmupEpochs = int
weightDecay = int
weightedLoss = int
}
primaryMetric = "string"
searchSpace = [
{
amsGradient = "string"
augmentations = "string"
beta1 = "string"
beta2 = "string"
distributed = "string"
earlyStopping = "string"
earlyStoppingDelay = "string"
earlyStoppingPatience = "string"
enableOnnxNormalization = "string"
evaluationFrequency = "string"
gradientAccumulationStep = "string"
layersToFreeze = "string"
learningRate = "string"
learningRateScheduler = "string"
modelName = "string"
momentum = "string"
nesterov = "string"
numberOfEpochs = "string"
numberOfWorkers = "string"
optimizer = "string"
randomSeed = "string"
stepLRGamma = "string"
stepLRStepSize = "string"
trainingBatchSize = "string"
trainingCropSize = "string"
validationBatchSize = "string"
validationCropSize = "string"
validationResizeSize = "string"
warmupCosineLRCycles = "string"
warmupCosineLRWarmupEpochs = "string"
weightDecay = "string"
weightedLoss = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
taskType = "ImageClassification"
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
}
Для ImageClassificationMultilabelиспользуйте:
{
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
modelSettings = {
advancedSettings = "string"
amsGradient = bool
augmentations = "string"
beta1 = int
beta2 = int
checkpointFrequency = int
checkpointModel = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
checkpointRunId = "string"
distributed = bool
earlyStopping = bool
earlyStoppingDelay = int
earlyStoppingPatience = int
enableOnnxNormalization = bool
evaluationFrequency = int
gradientAccumulationStep = int
layersToFreeze = int
learningRate = int
learningRateScheduler = "string"
modelName = "string"
momentum = int
nesterov = bool
numberOfEpochs = int
numberOfWorkers = int
optimizer = "string"
randomSeed = int
stepLRGamma = int
stepLRStepSize = int
trainingBatchSize = int
trainingCropSize = int
validationBatchSize = int
validationCropSize = int
validationResizeSize = int
warmupCosineLRCycles = int
warmupCosineLRWarmupEpochs = int
weightDecay = int
weightedLoss = int
}
primaryMetric = "string"
searchSpace = [
{
amsGradient = "string"
augmentations = "string"
beta1 = "string"
beta2 = "string"
distributed = "string"
earlyStopping = "string"
earlyStoppingDelay = "string"
earlyStoppingPatience = "string"
enableOnnxNormalization = "string"
evaluationFrequency = "string"
gradientAccumulationStep = "string"
layersToFreeze = "string"
learningRate = "string"
learningRateScheduler = "string"
modelName = "string"
momentum = "string"
nesterov = "string"
numberOfEpochs = "string"
numberOfWorkers = "string"
optimizer = "string"
randomSeed = "string"
stepLRGamma = "string"
stepLRStepSize = "string"
trainingBatchSize = "string"
trainingCropSize = "string"
validationBatchSize = "string"
validationCropSize = "string"
validationResizeSize = "string"
warmupCosineLRCycles = "string"
warmupCosineLRWarmupEpochs = "string"
weightDecay = "string"
weightedLoss = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
taskType = "ImageClassificationMultilabel"
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
}
Для ImageInstanceSegmentationиспользуйте:
{
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
modelSettings = {
advancedSettings = "string"
amsGradient = bool
augmentations = "string"
beta1 = int
beta2 = int
boxDetectionsPerImage = int
boxScoreThreshold = int
checkpointFrequency = int
checkpointModel = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
checkpointRunId = "string"
distributed = bool
earlyStopping = bool
earlyStoppingDelay = int
earlyStoppingPatience = int
enableOnnxNormalization = bool
evaluationFrequency = int
gradientAccumulationStep = int
imageSize = int
layersToFreeze = int
learningRate = int
learningRateScheduler = "string"
maxSize = int
minSize = int
modelName = "string"
modelSize = "string"
momentum = int
multiScale = bool
nesterov = bool
nmsIouThreshold = int
numberOfEpochs = int
numberOfWorkers = int
optimizer = "string"
randomSeed = int
stepLRGamma = int
stepLRStepSize = int
tileGridSize = "string"
tileOverlapRatio = int
tilePredictionsNmsThreshold = int
trainingBatchSize = int
validationBatchSize = int
validationIouThreshold = int
validationMetricType = "string"
warmupCosineLRCycles = int
warmupCosineLRWarmupEpochs = int
weightDecay = int
}
primaryMetric = "string"
searchSpace = [
{
amsGradient = "string"
augmentations = "string"
beta1 = "string"
beta2 = "string"
boxDetectionsPerImage = "string"
boxScoreThreshold = "string"
distributed = "string"
earlyStopping = "string"
earlyStoppingDelay = "string"
earlyStoppingPatience = "string"
enableOnnxNormalization = "string"
evaluationFrequency = "string"
gradientAccumulationStep = "string"
imageSize = "string"
layersToFreeze = "string"
learningRate = "string"
learningRateScheduler = "string"
maxSize = "string"
minSize = "string"
modelName = "string"
modelSize = "string"
momentum = "string"
multiScale = "string"
nesterov = "string"
nmsIouThreshold = "string"
numberOfEpochs = "string"
numberOfWorkers = "string"
optimizer = "string"
randomSeed = "string"
stepLRGamma = "string"
stepLRStepSize = "string"
tileGridSize = "string"
tileOverlapRatio = "string"
tilePredictionsNmsThreshold = "string"
trainingBatchSize = "string"
validationBatchSize = "string"
validationIouThreshold = "string"
validationMetricType = "string"
warmupCosineLRCycles = "string"
warmupCosineLRWarmupEpochs = "string"
weightDecay = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
taskType = "ImageInstanceSegmentation"
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
}
Для ImageObjectDetectionиспользуйте:
{
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
modelSettings = {
advancedSettings = "string"
amsGradient = bool
augmentations = "string"
beta1 = int
beta2 = int
boxDetectionsPerImage = int
boxScoreThreshold = int
checkpointFrequency = int
checkpointModel = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
checkpointRunId = "string"
distributed = bool
earlyStopping = bool
earlyStoppingDelay = int
earlyStoppingPatience = int
enableOnnxNormalization = bool
evaluationFrequency = int
gradientAccumulationStep = int
imageSize = int
layersToFreeze = int
learningRate = int
learningRateScheduler = "string"
maxSize = int
minSize = int
modelName = "string"
modelSize = "string"
momentum = int
multiScale = bool
nesterov = bool
nmsIouThreshold = int
numberOfEpochs = int
numberOfWorkers = int
optimizer = "string"
randomSeed = int
stepLRGamma = int
stepLRStepSize = int
tileGridSize = "string"
tileOverlapRatio = int
tilePredictionsNmsThreshold = int
trainingBatchSize = int
validationBatchSize = int
validationIouThreshold = int
validationMetricType = "string"
warmupCosineLRCycles = int
warmupCosineLRWarmupEpochs = int
weightDecay = int
}
primaryMetric = "string"
searchSpace = [
{
amsGradient = "string"
augmentations = "string"
beta1 = "string"
beta2 = "string"
boxDetectionsPerImage = "string"
boxScoreThreshold = "string"
distributed = "string"
earlyStopping = "string"
earlyStoppingDelay = "string"
earlyStoppingPatience = "string"
enableOnnxNormalization = "string"
evaluationFrequency = "string"
gradientAccumulationStep = "string"
imageSize = "string"
layersToFreeze = "string"
learningRate = "string"
learningRateScheduler = "string"
maxSize = "string"
minSize = "string"
modelName = "string"
modelSize = "string"
momentum = "string"
multiScale = "string"
nesterov = "string"
nmsIouThreshold = "string"
numberOfEpochs = "string"
numberOfWorkers = "string"
optimizer = "string"
randomSeed = "string"
stepLRGamma = "string"
stepLRStepSize = "string"
tileGridSize = "string"
tileOverlapRatio = "string"
tilePredictionsNmsThreshold = "string"
trainingBatchSize = "string"
validationBatchSize = "string"
validationIouThreshold = "string"
validationMetricType = "string"
warmupCosineLRCycles = "string"
warmupCosineLRWarmupEpochs = "string"
weightDecay = "string"
}
]
sweepSettings = {
earlyTermination = {
delayEvaluation = int
evaluationInterval = int
policyType = "string"
// For remaining properties, see EarlyTerminationPolicy objects
}
samplingAlgorithm = "string"
}
taskType = "ImageObjectDetection"
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
}
Для регрессиииспользуйте:
{
cvSplitColumnNames = [
"string"
]
featurizationSettings = {
blockedTransformers = [
"string"
]
columnNameAndTypes = {
{customized property} = "string"
}
datasetLanguage = "string"
enableDnnFeaturization = bool
mode = "string"
transformerParams = {
{customized property} = [
{
fields = [
"string"
]
parameters = ?
}
]
}
}
limitSettings = {
enableEarlyTermination = bool
exitScore = int
maxConcurrentTrials = int
maxCoresPerTrial = int
maxTrials = int
timeout = "string"
trialTimeout = "string"
}
nCrossValidations = {
mode = "string"
// For remaining properties, see NCrossValidations objects
}
primaryMetric = "string"
taskType = "Regression"
testData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
testDataSize = int
trainingSettings = {
allowedTrainingAlgorithms = [
"string"
]
blockedTrainingAlgorithms = [
"string"
]
enableDnnTraining = bool
enableModelExplainability = bool
enableOnnxCompatibleModels = bool
enableStackEnsemble = bool
enableVoteEnsemble = bool
ensembleModelDownloadTimeout = "string"
stackEnsembleSettings = {
stackMetaLearnerKWargs = ?
stackMetaLearnerTrainPercentage = int
stackMetaLearnerType = "string"
}
}
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
validationDataSize = int
weightColumnName = "string"
}
Для TextClassificationиспользуйте:
{
featurizationSettings = {
datasetLanguage = "string"
}
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
primaryMetric = "string"
taskType = "TextClassification"
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
}
Для TextClassificationMultilabelиспользуйте:
{
featurizationSettings = {
datasetLanguage = "string"
}
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
taskType = "TextClassificationMultilabel"
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
}
Для TextNERиспользуйте:
{
featurizationSettings = {
datasetLanguage = "string"
}
limitSettings = {
maxConcurrentTrials = int
maxTrials = int
timeout = "string"
}
taskType = "TextNER"
validationData = {
description = "string"
jobInputType = "string"
mode = "string"
uri = "string"
}
}
Объекты NCrossValidations
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
mode = "Auto"
}
Для пользовательских
{
mode = "Custom"
value = int
}
Объекты DistributionConfiguration
Задайте свойство
Для Mpiиспользуйте:
{
distributionType = "Mpi"
processCountPerInstance = int
}
Для PyTorchиспользуйте:
{
distributionType = "PyTorch"
processCountPerInstance = int
}
Для TensorFlowиспользуйте:
{
distributionType = "TensorFlow"
parameterServerCount = int
workerCount = int
}
Объекты IdentityConfiguration
Задайте свойство identityType, чтобы указать тип объекта.
Для AMLTokenиспользуйте:
{
identityType = "AMLToken"
}
Для управляемых
{
clientId = "string"
identityType = "Managed"
objectId = "string"
resourceId = "string"
}
Для UserIdentityиспользуйте:
{
identityType = "UserIdentity"
}
Объекты nodes
Задайте свойство nodesValueType, чтобы указать тип объекта.
Для всехиспользуйте:
{
nodesValueType = "All"
}
Объекты TriggerBase
Задайте свойство triggerType, чтобы указать тип объекта.
Для Cronиспользуйте:
{
expression = "string"
triggerType = "Cron"
}
Для повторенияиспользуйте:
{
frequency = "string"
interval = int
schedule = {
hours = [
int
]
minutes = [
int
]
monthDays = [
int
]
weekDays = [
"string"
]
}
triggerType = "Recurrence"
}
Объекты JobInput
Задайте свойство jobInputType, чтобы указать тип объекта.
Для custom_modelиспользуйте:
{
jobInputType = "custom_model"
mode = "string"
uri = "string"
}
Для литералаиспользуйте:
{
jobInputType = "literal"
value = "string"
}
Для mlflow_modelиспользуйте:
{
jobInputType = "mlflow_model"
mode = "string"
uri = "string"
}
Для mltableиспользуйте:
{
jobInputType = "mltable"
mode = "string"
uri = "string"
}
Для triton_modelиспользуйте:
{
jobInputType = "triton_model"
mode = "string"
uri = "string"
}
Для uri_fileиспользуйте:
{
jobInputType = "uri_file"
mode = "string"
uri = "string"
}
Для uri_folderиспользуйте:
{
jobInputType = "uri_folder"
mode = "string"
uri = "string"
}
Объекты TargetLags
Задайте свойство режима, чтобы указать тип объекта.
Для автоматического
{
mode = "Auto"
}
Для пользовательских
{
mode = "Custom"
values = [
int
]
}
Значения свойств
AllNodes
Имя | Описание | Ценность |
---|---|---|
nodesValueType | [Обязательный] Тип значения Nodes | "Все" (обязательно) |
AmlToken
Имя | Описание | Ценность |
---|---|---|
identityType | [Обязательный] Указывает тип платформы удостоверений. | AMLToken (обязательно) |
AutoForecastHorizon
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Задайте режим выбора значения горизонта прогнозирования. | "Авто" (обязательно) |
AutoMLJob
Имя | Описание | Ценность |
---|---|---|
environmentId | Идентификатор ресурса ARM спецификации среды для задания. Это необязательное значение для предоставления, если оно не указано, AutoML по умолчанию используется для рабочей версии курируемой среды AutoML при выполнении задания. |
струна |
environmentVariables | Переменные среды, включенные в задание. | AutoMLJobEnvironmentVariables |
jobType | [Обязательный] Указывает тип задания. | AutoML (обязательно) |
Выходы | Сопоставление привязок выходных данных, используемых в задании. | AutoMLJobOutputs |
ресурсы | Конфигурация вычислительных ресурсов для задания. | JobResourceConfiguration |
taskDetails | [Обязательный] Это сценарий, который может быть одним из таблиц/ NLP/Image | AutoMLVertical (обязательно) |
AutoMLJobEnvironmentVariables
Имя | Описание | Ценность |
---|
AutoMLJobOutputs
Имя | Описание | Ценность |
---|
AutoMLVertical
Имя | Описание | Ценность |
---|---|---|
logVerbosity | Подробность журнала для задания. | "Критический" "Отладка" "Ошибка" "Info" NotSet Предупреждение |
targetColumnName | Имя целевого столбца: это столбец прогнозируемых значений. Также называется именем столбца метки в контексте задач классификации. |
струна |
taskType | Установите значение "Классификация" для классификации типов. Установите значение "Прогнозирование" для типа прогнозирования. Установите значение ImageClassification для типа ImageClassification. Установите значение ImageClassificationMultilabel для типа ImageClassificationMultilabel. Установите значение ImageInstanceSegmentation для типа ImageInstanceSegmentation. Установите значение ImageObjectDetection для типа ImageObjectDetection. Установите значение "Регрессия" для регрессии типа. Установите значение TextClassification для типа TextClassification. Установите значение TextClassificationMultilabel для типа TextClassificationMultilabel. Установите значение TextNER для типа TextNer. | "Классификация" "Прогнозирование" ImageClassification ImageClassificationMultilabel "ImageInstanceSegmentation" ImageObjectDetection Регрессия TextClassification TextClassificationMultilabel TextNER (обязательно) |
trainingData | [Обязательный] Входные данные обучения. | MLTableJobInput (обязательно) |
AutoNCrossValidations
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим определения проверок N-Cross. | "Авто" (обязательно) |
Автосесональность
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим сезонности. | "Авто" (обязательно) |
AutoTargetLags
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Настройка режима задержки целевых объектов — автоматическое или настраиваемое | "Авто" (обязательно) |
AutoTargetRollingWindowSize
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим обнаружения TargetRollingWindowSiz. | "Авто" (обязательно) |
BanditPolicy
Имя | Описание | Ценность |
---|---|---|
policyType | [Обязательный] Имя конфигурации политики | "Банда" (обязательно) |
slackAmount | Абсолютное расстояние, допустимое от оптимального выполнения. | int |
slackFactor | Соотношение допустимого расстояния от оптимального выполнения. | int |
BayesianSamplingAlgorithm
Имя | Описание | Ценность |
---|---|---|
выборкаAlgorithmType | [Обязательный] Алгоритм, используемый для создания значений гиперпараметров, а также свойств конфигурации | Байесян (обязательный) |
Классификация
Имя | Описание | Ценность |
---|---|---|
cvSplitColumnNames | Столбцы, используемые для данных CVSplit. | string[] |
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | TableVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Количество сверток перекрестной проверки, применяемых к набору данных для обучения Если набор данных проверки не указан. |
NCrossValidations |
positiveLabel | Положительная метка для вычисления двоичных метрик. | струна |
primaryMetric | Первичная метрика для задачи. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
taskType | [Обязательный] Тип задачи для AutoMLJob. | "Классификация" (обязательно) |
testData | Проверка входных данных. | MLTableJobInput |
testDataSize | Доля тестового набора данных, который необходимо отложить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
trainingSettings | Входные данные для этапа обучения для задания AutoML. | КлассификацияTrainingSettings |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
weightColumnName | Имя столбца веса образца. Автоматизированное машинное обучение поддерживает взвешанный столбец в качестве входных данных, что приводит к тому, что строки в данных будут взвешированы вверх или вниз. | струна |
КлассификацияTrainingSettings
Имя | Описание | Ценность |
---|---|---|
allowedTrainingAlgorithms | Разрешенные модели для задачи классификации. | Массив строк, содержащий любой из: 'БернуллиNaiveBayes' "DecisionTree" "ExtremeRandomTrees" 'GradientBoosting' KNN LightGBM "LinearSVM" "LogisticRegression" MultinomialNaiveBayes "RandomForest" "ДИНАМ" SVM "XGBoostClassifier" |
blockedTrainingAlgorithms | Заблокированные модели для задачи классификации. | Массив строк, содержащий любой из: 'БернуллиNaiveBayes' "DecisionTree" "ExtremeRandomTrees" 'GradientBoosting' KNN LightGBM "LinearSVM" "LogisticRegression" MultinomialNaiveBayes "RandomForest" "ДИНАМ" SVM "XGBoostClassifier" |
enableDnnTraining | Включите рекомендацию моделей DNN. | bool |
enableModelExplainability | Пометка для включения объяснимости для оптимальной модели. | bool |
enableOnnxCompatibleModels | Флаг включения совместимых моделей onnx. | bool |
enableStackEnsemble | Включите запуск ансамбля стека. | bool |
enableVoteEnsemble | Включите запуск ансамбля голосования. | bool |
ensembleModelDownloadTimeout | Во время создания модели VotingEnsemble и StackEnsemble скачиваются несколько встроенных моделей из предыдущих дочерних запусков. Настройте этот параметр с более высоким значением, чем 300 с, если требуется больше времени. |
струна |
stackEnsembleSettings | Параметры ансамбля стека для выполнения ансамбля стека. | StackEnsembleSettings |
ColumnTransformer
Имя | Описание | Ценность |
---|---|---|
Поля | Поля для применения логики преобразователя. | string[] |
Параметры | Различные свойства, передаваемые преобразователю. Ожидается, что входные данные — это словарь пар "ключ", "значение" в формате JSON. |
любой |
CommandJob
Имя | Описание | Ценность |
---|---|---|
codeId | Идентификатор ресурса ARM ресурса ресурса кода. | струна |
команда | [Обязательный] Команда, выполняемая при запуске задания. Например. "Python train.py" | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
распределение | Конфигурация распределения задания. Если задано, это должен быть один из Mpi, Tensorflow, PyTorch или NULL. | distributionConfiguration |
environmentId | [Обязательный] Идентификатор ресурса ARM спецификации среды для задания. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
environmentVariables | Переменные среды, включенные в задание. | CommandJobEnvironmentVariables |
Входы | Сопоставление входных привязок данных, используемых в задании. | CommandJobInputs |
jobType | [Обязательный] Указывает тип задания. | "Command" (обязательный) |
Ограничения | Ограничение задания команд. | CommandJobLimits |
Выходы | Сопоставление привязок выходных данных, используемых в задании. | CommandJobOutputs |
ресурсы | Конфигурация вычислительных ресурсов для задания. | JobResourceConfiguration |
CommandJobEnvironmentVariables
Имя | Описание | Ценность |
---|
CommandJobInputs
Имя | Описание | Ценность |
---|
CommandJobLimits
Имя | Описание | Ценность |
---|---|---|
jobLimitsType | [Обязательный] Тип JobLimit. | "Command" "Очистка" (обязательно) |
Времени ожидания | Максимальная длительность выполнения в формате ISO 8601, после которой задание будет отменено. Поддерживается только длительность с точностью до секунд. | струна |
CommandJobOutputs
Имя | Описание | Ценность |
---|
CronTrigger
Имя | Описание | Ценность |
---|---|---|
выражение | [Обязательный] Указывает выражение крона расписания. Выражение должно соответствовать формату NCronTab. |
струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
triggerType | [Обязательный] | "Cron" (обязательно) |
CustomForecastHorizon
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Задайте режим выбора значения горизонта прогнозирования. | "Custom" (обязательный) |
ценность | [Обязательный] Прогноз значения горизонта. | int (обязательно) |
CustomModelJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "custom_model" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
CustomModelJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "custom_model" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
CustomNCrossValidations
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим определения проверок N-Cross. | "Custom" (обязательный) |
ценность | [Обязательный] Значение N-Cross validations. | int (обязательно) |
CustomSeasonality
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим сезонности. | "Custom" (обязательный) |
ценность | [Обязательный] Значение сезонности. | int (обязательно) |
CustomTargetLags
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Настройка режима задержки целевых объектов — автоматическое или настраиваемое | "Custom" (обязательный) |
Значения | [Обязательный] Задайте значения задержки целевых значений. | int[] (обязательно) |
CustomTargetRollingWindowSize
Имя | Описание | Ценность |
---|---|---|
режим | [Обязательный] Режим обнаружения TargetRollingWindowSiz. | "Custom" (обязательный) |
ценность | [Обязательный] Значение TargetRollingWindowSize. | int (обязательно) |
DistributionConfiguration
Имя | Описание | Ценность |
---|---|---|
distributionType | Установите значение Mpi для типа Mpi. Установите значение PyTorch для типа PyTorch. Установите значение TensorFlow для типа TensorFlow. | "Mpi" "PyTorch" TensorFlow (обязательный) |
EarlyTerminationPolicy
Имя | Описание | Ценность |
---|---|---|
delayEvaluation | Количество интервалов, с помощью которых необходимо отложить первую оценку. | int |
evaluationInterval | Интервал (количество запусков) между оценками политики. | int |
policyType | Установите значение "Bandit" для типа BanditPolicy. Установите значение MedianStopping для типа MedianStoppingPolicy. Задайте значение TruncationSelection для типа TruncationSelectionPolicy. | "Бандит" MedianStopping УсечениеSelection (обязательно) |
EndpointScheduleAction
Имя | Описание | Ценность |
---|---|---|
actionType | [Обязательный] Указывает тип действия расписания | InvokeBatchEndpoint (обязательно) |
endpointInvocationDefinition | [Обязательный] Определяет сведения о определении действия расписания. <см. href="TBD" /> |
любой (обязательный) |
ПрогнозHorizon
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoForecastHorizon. Установите значение Custom для типа CustomForecastHorizon. | "Авто" "Custom" (обязательный) |
Прогнозирование
Имя | Описание | Ценность |
---|---|---|
cvSplitColumnNames | Столбцы, используемые для данных CVSplit. | string[] |
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | TableVerticalFeaturizationSettings |
forecastingSettings | Прогнозирование определенных входных данных задачи. | ForecastingSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Количество сверток перекрестной проверки, применяемых к набору данных для обучения Если набор данных проверки не указан. |
NCrossValidations |
primaryMetric | Основная метрика для задачи прогнозирования. | "NormalizedMeanAbsoluteError" "NormalizedRootMeanSquaredError" "R2Score" 'SpearmanCorrelation' |
taskType | [Обязательный] Тип задачи для AutoMLJob. | "Прогнозирование" (обязательно) |
testData | Проверка входных данных. | MLTableJobInput |
testDataSize | Доля тестового набора данных, который необходимо отложить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
trainingSettings | Входные данные для этапа обучения для задания AutoML. | ПрогнозированиеTrainingSettings |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
weightColumnName | Имя столбца веса образца. Автоматизированное машинное обучение поддерживает взвешанный столбец в качестве входных данных, что приводит к тому, что строки в данных будут взвешированы вверх или вниз. | струна |
ПрогнозированиеSettings
Имя | Описание | Ценность |
---|---|---|
countryOrRegionForHolidays | Страна или регион для праздников для задач прогнозирования. Это должны быть коды стран и регионов ISO 3166, например "US" или "GB". |
струна |
cvStepSize | Число периодов между временем начала одного свертывания CV и следующего свертывания. Для Например, если CVStepSize = 3 для ежедневных данных, время источника для каждого свертывания будеттри дня в стороне. |
int |
featureLags | Флаг для создания задержек для числовых функций с параметром auto или NULL. | "Авто" "Нет" |
прогнозHorizon | Требуемый максимальный горизонт прогнозирования в единицах частоты временных рядов. | ForecastHorizon |
частота | При прогнозировании этот параметр представляет период, с которым нужно, например ежедневно, еженедельно, ежегодно и т. д. Частота прогноза — это частота набора данных по умолчанию. | струна |
Сезонность | Задайте сезонность временных рядов в качестве целого числа, кратного частоты ряда. Если для сезонности задано значение auto, он будет выводиться. |
сезонности |
shortSeriesHandlingConfig | Параметр, определяющий, как autoML должен обрабатывать короткие временные ряды. | "Авто" "Drop" "Нет" "Pad" |
targetAggregateFunction | Функция, используемая для агрегирования целевого столбца временных рядов для соответствия заданной пользователем частоте. Если параметр TargetAggregateFunction задан, т. е. не "Нет", но параметр freq не задан, возникает ошибка. Возможные функции агрегирования целевых значений: sum, max, min и среднее. |
"Max" "Среднее" "Min" "Нет" "Sum" |
targetLags | Число прошлых периодов задержки от целевого столбца. | TargetLags |
targetRollingWindowSize | Количество прошлых периодов, используемых для создания скользящего среднего окна целевого столбца. | TargetRollingWindowSize |
timeColumnName | Имя столбца времени. Этот параметр требуется при прогнозировании для указания столбца datetime в входных данных, используемых для создания временных рядов и вывода его частоты. | струна |
timeSeriesIdColumnNames | Имена столбцов, используемых для группировки таймерий. Его можно использовать для создания нескольких рядов. Если набор данных не определен, предполагается, что набор данных является одним временным рядом. Этот параметр используется с прогнозированием типа задачи. |
string[] |
useStl | Настройте декомпозицию STL целевого столбца временных рядов. | "Нет" "Сезон" 'SeasonTrend' |
ПрогнозированиеTrainingSettings
Имя | Описание | Ценность |
---|---|---|
allowedTrainingAlgorithms | Разрешенные модели для задачи прогнозирования. | Массив строк, содержащий любой из: 'Arimax' AutoArima "Среднее" "DecisionTree" ElasticNet "ЭкспоненциальнаяSmoothing" "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "Наивный" "Пророк" "RandomForest" "СезоннаяAverage" "СезоннаяNaive" "ДИНАМ" 'TCNForecaster' "XGBoostRegressor" |
blockedTrainingAlgorithms | Заблокированные модели для задачи прогнозирования. | Массив строк, содержащий любой из: 'Arimax' AutoArima "Среднее" "DecisionTree" ElasticNet "ЭкспоненциальнаяSmoothing" "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "Наивный" "Пророк" "RandomForest" "СезоннаяAverage" "СезоннаяNaive" "ДИНАМ" 'TCNForecaster' "XGBoostRegressor" |
enableDnnTraining | Включите рекомендацию моделей DNN. | bool |
enableModelExplainability | Пометка для включения объяснимости для оптимальной модели. | bool |
enableOnnxCompatibleModels | Флаг включения совместимых моделей onnx. | bool |
enableStackEnsemble | Включите запуск ансамбля стека. | bool |
enableVoteEnsemble | Включите запуск ансамбля голосования. | bool |
ensembleModelDownloadTimeout | Во время создания модели VotingEnsemble и StackEnsemble скачиваются несколько встроенных моделей из предыдущих дочерних запусков. Настройте этот параметр с более высоким значением, чем 300 с, если требуется больше времени. |
струна |
stackEnsembleSettings | Параметры ансамбля стека для выполнения ансамбля стека. | StackEnsembleSettings |
GridSamplingAlgorithm
Имя | Описание | Ценность |
---|---|---|
выборкаAlgorithmType | [Обязательный] Алгоритм, используемый для создания значений гиперпараметров, а также свойств конфигурации | Grid (обязательно) |
IdentityConfiguration
Имя | Описание | Ценность |
---|---|---|
identityType | Установите значение AMLToken для типа AmlToken. Установите значение Managed для типа ManagedIdentity. Установите значение UserIdentity для типа UserIdentity. | AMLToken "Managed" (Управляемый) UserIdentity (обязательно) |
ImageClassification
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsClassification |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageClassification (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageClassificationMultilabel
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsClassification |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "IOU" "NormMacroRecall" "PrecisionScoreWeighted" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsClassification[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageClassificationMultilabel (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageInstanceSegmentation
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsObjectDetection |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "MeanAveragePrecision" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageInstanceSegmentation (обязательно) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageLimitSettings
Имя | Описание | Ценность |
---|---|---|
maxConcurrentTrials | Максимальное число параллельных итераций AutoML. | int |
maxTrials | Максимальное число итераций AutoML. | int |
Времени ожидания | Время ожидания задания AutoML. | струна |
ImageModelDistributionSettingsClassification
Имя | Описание | Ценность |
---|---|---|
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | струна |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
распределённый | Следует ли использовать обучение распространителя. | струна |
earlyStopping | Включите логику раннего остановки во время обучения. | струна |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
струна |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
струна |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | струна |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | струна |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
струна |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
струна |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | струна |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | струна |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | струна |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | струна |
оптимизатор | Тип оптимизатора. Должно быть либо "хем", "адам", либо "адам". | струна |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | струна |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | струна |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | струна |
trainingCropSize | Размер обрезки изображения, входной в нейронную сеть для обучающего набора данных. Должно быть положительным целым числом. | струна |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | струна |
validationCropSize | Размер обрезки изображения, входной в нейронную сеть для набора данных проверки. Должно быть положительным целым числом. | струна |
validationResizeSize | Размер изображения, в который необходимо изменить размер перед обрезкой для набора данных проверки. Должно быть положительным целым числом. | струна |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | струна |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | струна |
весеedLoss | Весовая потеря. Допустимые значения — 0 без потери веса. 1 для взвешаемой потери с sqrt. (class_weights). 2 для взвешаемой потери с class_weights. Должно быть 0 или 1 или 2. |
струна |
ImageModelDistributionSettingsObjectDetection
Имя | Описание | Ценность |
---|---|---|
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | струна |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
boxDetectionsPerImage | Максимальное количество обнаружений на изображение для всех классов. Должно быть положительным целым числом. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
boxScoreThreshold | Во время вывода возвращаются только предложения с оценкой классификации больше, чем BoxScoreThreshold. Должен быть плавающей запятой в диапазоне[0, 1]. |
струна |
распределённый | Следует ли использовать обучение распространителя. | струна |
earlyStopping | Включите логику раннего остановки во время обучения. | струна |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
струна |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
струна |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | струна |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | струна |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
струна |
imageSize | Размер изображения для обучения и проверки. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
струна |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
струна |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | струна |
maxSize | Максимальный размер изображения для перемасштабирования перед его добавлением в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
minSize | Минимальный размер изображения, который необходимо перемасштабировать, прежде чем передавать его в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
modelSize | Размер модели. Должен быть "маленький", "средний", "большой" или "xlarge". Примечание. Учебный запуск может попасть в OOM CUDA, если размер модели слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
струна |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
MultiScale | Включите многомасштабное изображение, изменив размер изображения по +/-50%. Примечание. Учебный запуск может попасть в OOM CUDA, если недостаточно памяти GPU. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
струна |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | струна |
nmsIouThreshold | Пороговое значение ввода-вывода, используемое во время вывода в процессе последующей обработки NMS. Должен быть плавать в диапазоне [0, 1]. | струна |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | струна |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | струна |
оптимизатор | Тип оптимизатора. Должно быть либо "хем", "адам", либо "адам". | струна |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | струна |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | струна |
tileGridSize | Размер сетки, используемый для размещения каждого изображения. Примечание. TileGridSize не должно быть Нет, чтобы включить логику обнаружения небольших объектов. Строка, содержащая два целых числа в формате mxn. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
tileOverlapRatio | Коэффициент перекрытия между смежными плитками в каждом измерении. Должен быть плавать в диапазоне [0, 1). Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
tilePredictionsNmsThreshold | Пороговое значение IOU для выполнения NMS при слиянии прогнозов из плиток и изображений. Используется в проверке или выводе. Должен быть плавать в диапазоне [0, 1]. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. NMS: не максимальное подавление |
струна |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | струна |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | струна |
validationIouThreshold | Пороговое значение IOU для использования при вычислении метрики проверки. Должен быть плавать в диапазоне [0, 1]. | струна |
validationMetricType | Метод вычисления метрик, используемый для метрик проверки. Должно быть "none", "coco", "voc" или "coco_voc". | струна |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | струна |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | струна |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | струна |
ImageModelSettingsClassification
Имя | Описание | Ценность |
---|---|---|
advancedSettings | Параметры для расширенных сценариев. | струна |
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | bool |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
контрольная точкаFrequency | Частота хранения контрольных точек модели. Должно быть положительным целым числом. | int |
контрольная точкаModel | Предварительно обученная модель контрольной точки для добавочного обучения. | MLFlowModelJobInput |
контрольная точкаRunId | Идентификатор предыдущего запуска с предварительно обученной контрольной точкой для добавочного обучения. | струна |
распределённый | Следует ли использовать распределенное обучение. | bool |
earlyStopping | Включите логику раннего остановки во время обучения. | bool |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
int |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
int |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | bool |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | int |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
int |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
int |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | int |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | "Нет" Шаг "WarmupCosine" |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | bool |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | int |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | int |
оптимизатор | Тип оптимизатора. | "Адам" "Адамв" "Нет" "Хем" |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | int |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | int |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | int |
trainingCropSize | Размер обрезки изображения, входной в нейронную сеть для обучающего набора данных. Должно быть положительным целым числом. | int |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | int |
validationCropSize | Размер обрезки изображения, входной в нейронную сеть для набора данных проверки. Должно быть положительным целым числом. | int |
validationResizeSize | Размер изображения, в который необходимо изменить размер перед обрезкой для набора данных проверки. Должно быть положительным целым числом. | int |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | int |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | int |
весеedLoss | Весовая потеря. Допустимые значения — 0 без потери веса. 1 для взвешаемой потери с sqrt. (class_weights). 2 для взвешаемой потери с class_weights. Должно быть 0 или 1 или 2. |
int |
ImageModelSettingsObjectDetection
Имя | Описание | Ценность |
---|---|---|
advancedSettings | Параметры для расширенных сценариев. | струна |
amsGradient | Включите AMSGrad, если оптимизатор является "адам" или "адамв". | bool |
расширение | Параметры для использования расширения. | струна |
beta1 | Значение "beta1", если оптимизатор имеет значение "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
beta2 | Значение "beta2", когда оптимизатор является "адам" или "адамв". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
boxDetectionsPerImage | Максимальное количество обнаружений на изображение для всех классов. Должно быть положительным целым числом. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
boxScoreThreshold | Во время вывода возвращаются только предложения с оценкой классификации больше, чем BoxScoreThreshold. Должен быть плавающей запятой в диапазоне[0, 1]. |
int |
контрольная точкаFrequency | Частота хранения контрольных точек модели. Должно быть положительным целым числом. | int |
контрольная точкаModel | Предварительно обученная модель контрольной точки для добавочного обучения. | MLFlowModelJobInput |
контрольная точкаRunId | Идентификатор предыдущего запуска с предварительно обученной контрольной точкой для добавочного обучения. | струна |
распределённый | Следует ли использовать распределенное обучение. | bool |
earlyStopping | Включите логику раннего остановки во время обучения. | bool |
earlyStoppingDelay | Минимальное количество эпох или оценки проверки, которые следует ожидать до улучшения первичной метрики отслеживается для раннего остановки. Должно быть положительным целым числом. |
int |
earlyStoppingPatience | Минимальное количество эпох или оценки проверки без первичного улучшения метрик до Выполнение остановлено. Должно быть положительным целым числом. |
int |
enableOnnxNormalization | Включите нормализацию при экспорте модели ONNX. | bool |
evaluationFrequency | Частота для оценки набора данных проверки для получения показателей метрик. Должно быть положительным целым числом. | int |
gradientAccumulationStep | Градиентное накопление означает выполнение настроенных шагов "GradAccumulationStep" без обновление весов модели при накоплении градиентов этих шагов, а затем использование накопленные градиенты для вычисления обновлений веса. Должно быть положительным целым числом. |
int |
imageSize | Размер изображения для обучения и проверки. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
int |
layersToFreeze | Количество слоев, которые необходимо заморозить для модели. Должно быть положительным целым числом. Например, передача 2 в качестве значения для средства seresnext замораживание слоя0 и слоя1. Полный список моделей, поддерживаемых и подробных сведений о замораживании слоя, пожалуйста, см. статью /azure/machine-learning/how-to-auto-train-image-models. |
int |
LearningRate | Начальная скорость обучения. Должен быть плавающей запятой в диапазоне [0, 1]. | int |
learningRateScheduler | Тип планировщика скорости обучения. Должен быть "warmup_cosine" или "шаг". | "Нет" Шаг "WarmupCosine" |
maxSize | Максимальный размер изображения для перемасштабирования перед его добавлением в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
minSize | Минимальный размер изображения, который необходимо перемасштабировать, прежде чем передавать его в магистраль. Должно быть положительным целым числом. Примечание. Учебный запуск может попасть в OOM CUDA, если размер слишком велик. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
ModelName | Имя модели, используемой для обучения. Дополнительные сведения о доступных моделях см. в официальной документации: /azure/machine-learning/how-to-auto-train-image-models. |
струна |
modelSize | Размер модели. Должен быть "маленький", "средний", "большой" или "xlarge". Примечание. Учебный запуск может попасть в OOM CUDA, если размер модели слишком велик. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
'ExtraLarge' "Большой" "Средний" "Нет" "Маленький" |
импульс | Значение импульса, когда оптимизатор имеет значение "оптимизатор". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
MultiScale | Включите многомасштабное изображение, изменив размер изображения по +/-50%. Примечание. Учебный запуск может попасть в OOM CUDA, если недостаточно памяти GPU. Примечание. Эти параметры поддерживаются только для алгоритма yolov5. |
bool |
нестеров | Включите nesterov, если оптимизатор имеет значение "хем". | bool |
nmsIouThreshold | Пороговое значение ввода-вывода, используемое во время вывода в процессе последующей обработки NMS. Должен быть плавающей запятой в диапазоне [0, 1]. | int |
numberOfEpochs | Число эпох обучения. Должно быть положительным целым числом. | int |
numberOfWorkers | Количество рабочих ролей загрузчика данных. Должно быть неотрицательное целое число. | int |
оптимизатор | Тип оптимизатора. | "Адам" "Адамв" "Нет" "Хем" |
randomSeed | Случайное начальное значение, используемое при использовании детерминированного обучения. | int |
stepLRGamma | Значение гамма, если планировщик скорости обучения — "шаг". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
stepLRStepSize | Значение размера шага при планировании скорости обучения — "шаг". Должно быть положительным целым числом. | int |
tileGridSize | Размер сетки, используемый для размещения каждого изображения. Примечание. TileGridSize не должно быть Нет, чтобы включить логику обнаружения небольших объектов. Строка, содержащая два целых числа в формате mxn. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
струна |
tileOverlapRatio | Коэффициент перекрытия между смежными плитками в каждом измерении. Должен быть плавать в диапазоне [0, 1). Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
tilePredictionsNmsThreshold | Пороговое значение IOU для выполнения NMS при слиянии прогнозов из плиток и изображений. Используется в проверке или выводе. Должен быть плавать в диапазоне [0, 1]. Примечание. Эти параметры не поддерживаются для алгоритма yolov5. |
int |
trainingBatchSize | Размер пакета обучения. Должно быть положительным целым числом. | int |
validationBatchSize | Размер пакета проверки. Должно быть положительным целым числом. | int |
validationIouThreshold | Пороговое значение IOU для использования при вычислении метрики проверки. Должен быть плавать в диапазоне [0, 1]. | int |
validationMetricType | Метод вычисления метрик, используемый для метрик проверки. | "Коко" 'CocoVoc' "Нет" "Voc" |
warmupCosineLRCycles | Значение косинусного цикла при планировании скорости обучения — "warmup_cosine". Должен быть плавающей запятой в диапазоне [0, 1]. | int |
warmupCosineLRWarmupEpochs | Значение эпохи нагревания при планировании скорости обучения — "warmup_cosine". Должно быть положительным целым числом. | int |
weightDecay | Значение распада веса, если оптимизатор имеет значение "оптимизатор", "адам" или "адамв". Должен быть плавающей запятой в диапазоне[0, 1]. | int |
ImageObjectDetection
Имя | Описание | Ценность |
---|---|---|
limitSettings | [Обязательный] Ограничение параметров для задания AutoML. | ImageLimitSettings (обязательно) |
modelSettings | Параметры, используемые для обучения модели. | ImageModelSettingsObjectDetection |
primaryMetric | Основная метрика для оптимизации для этой задачи. | "MeanAveragePrecision" |
searchSpace | Поиск места для выборки различных сочетаний моделей и их гиперпараметров. | ImageModelDistributionSettingsObjectDetection[] |
sweepSettings | Очистка модели и гиперпараметры, связанные с параметрами. | ImageSweepSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | ImageObjectDetection (обязательно) |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
ImageSweepSettings
Имя | Описание | Ценность |
---|---|---|
ранняятерминация | Тип политики раннего завершения. | EarlyTerminationPolicy |
выборкаAlgorithm | [Обязательный] Тип алгоритмов выборки гиперпараметров. | "Байезиан" "Сетка" "Случайный" (обязательный) |
JobBaseProperties
Имя | Описание | Ценность |
---|---|---|
componentId | Идентификатор ресурса ARM ресурса компонента. | струна |
computeId | Идентификатор ресурса ARM вычислительного ресурса. | струна |
описание | Текст описания ресурса. | струна |
displayName | Отображаемое имя задания. | струна |
experimentName | Имя эксперимента, к которому принадлежит задание. Если задание не задано, задание помещается в эксперимент по умолчанию. | струна |
тождество | Конфигурация удостоверения. Если задано, это должен быть один из AmlToken, ManagedIdentity, UserIdentity или NULL. По умолчанию AmlToken имеет значение NULL. |
IdentityConfiguration |
isArchived | Архивируется ли ресурс? | bool |
jobType | Установите значение AutoML для типа AutoMLJob. Задайте для типа command CommandJob. Установите значение Pipeline для типа PipelineJob. Установите значение "Sweep" для типа SweepJob. | AutoML "Command" Конвейер "Очистка" (обязательно) |
свойства | Словарь свойств ресурса. | ResourceBaseProperties |
Услуги | Список заданий. Для локальных заданий конечная точка задания будет иметь значение конечной точки FileStreamObject. |
JobBaseServices |
Теги | Словарь тегов. Теги можно добавлять, удалять и обновлять. | ResourceBaseTags |
JobBaseServices
Имя | Описание | Ценность |
---|
JobInput
Имя | Описание | Ценность |
---|---|---|
описание | Описание входных данных. | струна |
jobInputType | Установите значение "custom_model" для типа CustomModelJobInput. Задайте значение "литерал" для типа LiteralJobInput. Установите значение "mlflow_model" для типа MLFlowModelJobInput. Установите значение mltable для типа MLTableJobInput. Установите значение "triton_model" для типа TritonModelJobInput. Установите значение "uri_file" для типа UriFileJobInput. Установите значение "uri_folder" для типа UriFolderJobInput. | "custom_model" "литерал" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
JobOutput
Имя | Описание | Ценность |
---|---|---|
описание | Описание выходных данных. | струна |
jobOutputType | Установите значение "custom_model" для типа CustomModelJobOutput. Установите значение "mlflow_model" для типа MLFlowModelJobOutput. Установите значение mltable для типа MLTableJobOutput. Установите значение "triton_model" для типа TritonModelJobOutput. Установите значение "uri_file" для типа UriFileJobOutput. Установите значение "uri_folder" для типа UriFolderJobOutput. | "custom_model" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
JobResourceConfiguration
Имя | Описание | Ценность |
---|---|---|
dockerArgs | Дополнительные аргументы для передачи команде запуска Docker. Это переопределит все параметры, которые уже были заданы системой или в этом разделе. Этот параметр поддерживается только для типов вычислений Машинного обучения Azure. | струна |
instanceCount | Необязательное количество экземпляров или узлов, используемых целевым объектом вычислений. | int |
instanceType | Необязательный тип виртуальной машины, используемой в качестве поддержки целевого объекта вычислений. | струна |
свойства | Дополнительные контейнеры свойств. | ResourceConfigurationProperties |
shmSize | Размер общего блока памяти контейнера Docker. Это должно быть в формате (число)(единица), где число должно быть больше 0, а единица может быть одной из b(байтов), k(килобайтов), m(мегабайт) или g(g(gigabytes). | струна Ограничения целостности: Pattern = \d+[bBkKmMgG] |
JobScheduleAction
Имя | Описание | Ценность |
---|---|---|
actionType | [Обязательный] Указывает тип действия расписания | CreateJob (обязательный) |
jobDefinition | [Обязательный] Определяет сведения о определении действия расписания. | JobBaseProperties (обязательно) |
JobService
Имя | Описание | Ценность |
---|---|---|
конечная точка | URL-адрес конечной точки. | струна |
jobServiceType | Тип конечной точки. | струна |
Узлов | Узлы, на которые пользователь хочет запустить службу. Если узлы не заданы или заданы значение NULL, служба будет запущена только на узле лидера. |
узлов |
порт | Порт для конечной точки. | int |
свойства | Дополнительные свойства, заданные в конечной точке. | JobServiceProperties |
JobServiceProperties
Имя | Описание | Ценность |
---|
ЛитералJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "литерал" (обязательный) |
ценность | [Обязательный] Литеральное значение для входных данных. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
ManagedIdentity
Имя | Описание | Ценность |
---|---|---|
clientId | Указывает назначаемое пользователем удостоверение по идентификатору клиента. Для назначаемого системой не устанавливайте это поле. | струна Ограничения целостности: Минимальная длина = 36 Максимальная длина = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
identityType | [Обязательный] Указывает тип платформы удостоверений. | Managed (обязательный) |
objectId | Указывает назначаемое пользователем удостоверение по идентификатору объекта. Для назначаемого системой не устанавливайте это поле. | струна Ограничения целостности: Минимальная длина = 36 Максимальная длина = 36 Pattern = ^[0-9a-fA-F]{8}-([0-9a-fA-F]{4}-){3}[0-9a-fA-F]{12}$ |
resourceId | Указывает удостоверение, назначаемое пользователем, по идентификатору ресурса ARM. Для назначаемого системой не устанавливайте это поле. | струна |
MedianStoppingPolicy
Имя | Описание | Ценность |
---|---|---|
policyType | [Обязательный] Имя конфигурации политики | MedianStopping (обязательно) |
Microsoft.MachineLearningServices/workspaces/schedules
Имя | Описание | Ценность |
---|---|---|
имя | Имя ресурса | струна Ограничения целостности: Pattern = ^[a-zA-Z0-9][a-zA-Z0-9\-_]{0,254}$ (обязательно) |
parent_id | Идентификатор ресурса, который является родительским для этого ресурса. | Идентификатор ресурса типа: рабочих областей |
свойства | [Обязательный] Дополнительные атрибуты сущности. | ScheduleProperties (обязательно) |
тип | Тип ресурса | "Microsoft.MachineLearningServices/workspaces/schedules@2023-04-01" |
MLFlowModelJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "mlflow_model" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLFlowModelJobInput
Имя | Описание | Ценность |
---|---|---|
описание | Описание входных данных. | струна |
jobInputType | [Обязательный] Указывает тип задания. | "custom_model" "литерал" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLFlowModelJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "mlflow_model" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
MLTableJobInput
Имя | Описание | Ценность |
---|---|---|
описание | Описание входных данных. | струна |
jobInputType | [Обязательный] Указывает тип задания. | "custom_model" "литерал" "mlflow_model" "mltable" "triton_model" "uri_file" "uri_folder" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLTableJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "mltable" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
MLTableJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "mltable" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
Mpi
Имя | Описание | Ценность |
---|---|---|
distributionType | [Обязательный] Указывает тип платформы распространения. | Mpi (обязательно) |
processCountPerInstance | Количество процессов на узел MPI. | int |
NCrossValidations
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoNCrossValidations. Установите значение Custom для типа CustomNCrossValidations. | "Авто" "Custom" (обязательный) |
NlpVerticalFeaturizationSettings
Имя | Описание | Ценность |
---|---|---|
datasetLanguage | Язык набора данных, полезный для текстовых данных. | струна |
NlpVerticalLimitSettings
Имя | Описание | Ценность |
---|---|---|
maxConcurrentTrials | Максимальное число параллельных итераций AutoML. | int |
maxTrials | Число итераций AutoML. | int |
Времени ожидания | Время ожидания задания AutoML. | струна |
Узлов
Имя | Описание | Ценность |
---|---|---|
nodesValueType | Установите значение All для типа AllNodes. | "Все" (обязательно) |
Объективный
Имя | Описание | Ценность |
---|---|---|
цель | [Обязательный] Определяет поддерживаемые цели метрик для настройки гиперпараметров | "Развернуть" "Свернуть" (обязательно) |
primaryMetric | [Обязательный] Имя метрики для оптимизации. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
PipelineJob
Имя | Описание | Ценность |
---|---|---|
Входы | Входные данные для задания конвейера. | PipelineJobInputs |
Рабочих мест | Задания создают задание конвейера. | PipelineJobJobs |
jobType | [Обязательный] Указывает тип задания. | Pipeline (обязательный) |
Выходы | Выходные данные для задания конвейера | PipelineJobOutputs |
Параметры | Параметры конвейера, например ContinueRunOnStepFailure и т. д. | любой |
sourceJobId | Идентификатор ресурса ARM исходного задания. | струна |
PipelineJobInputs
Имя | Описание | Ценность |
---|
PipelineJobJobs
Имя | Описание | Ценность |
---|
PipelineJobOutputs
Имя | Описание | Ценность |
---|
PyTorch
Имя | Описание | Ценность |
---|---|---|
distributionType | [Обязательный] Указывает тип платформы распространения. | PyTorch (обязательный) |
processCountPerInstance | Количество процессов на узел. | int |
RandomSamplingAlgorithm
Имя | Описание | Ценность |
---|---|---|
правило | Конкретный тип случайного алгоритма | "Случайный" 'Sobol' |
выборкаAlgorithmType | [Обязательный] Алгоритм, используемый для создания значений гиперпараметров, а также свойств конфигурации | "Случайный" (обязательный) |
семя | Необязательное целое число, используемое в качестве начального значения для случайного создания чисел | int |
ПовторениеSchedule
Имя | Описание | Ценность |
---|---|---|
Часов | [Обязательный] Список часов для расписания. | int[] (обязательно) |
протокол | [Обязательный] Список минут для расписания. | int[] (обязательно) |
monthDays | Список дней месяца для расписания | int[] |
будни | Список дней для расписания. | Массив строк, содержащий любой из: "Пятница" "Понедельник" "Суббота" "Воскресенье" "Четверг" "Вторник" "Среда" |
ПовторениеTrigger
Имя | Описание | Ценность |
---|---|---|
частота | [Обязательный] Частота запуска расписания. | "День" "Час" "Минута" "Месяц" "Неделя" (обязательно) |
интервал | [Обязательный] Указывает интервал расписания в сочетании с частотой | int (обязательно) |
расписание | Расписание повторения. | ПовторениеSchedule |
triggerType | [Обязательный] | "Повторение" (обязательно) |
Регрессия
Имя | Описание | Ценность |
---|---|---|
cvSplitColumnNames | Столбцы, используемые для данных CVSplit. | string[] |
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | TableVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | TableVerticalLimitSettings |
nCrossValidations | Количество сверток перекрестной проверки, применяемых к набору данных для обучения Если набор данных проверки не указан. |
NCrossValidations |
primaryMetric | Основная метрика для задачи регрессии. | "NormalizedMeanAbsoluteError" "NormalizedRootMeanSquaredError" "R2Score" 'SpearmanCorrelation' |
taskType | [Обязательный] Тип задачи для AutoMLJob. | Регрессия (обязательно) |
testData | Проверка входных данных. | MLTableJobInput |
testDataSize | Доля тестового набора данных, который необходимо отложить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
trainingSettings | Входные данные для этапа обучения для задания AutoML. | РегрессионTrainingSettings |
validationData | Входные данные проверки. | MLTableJobInput |
validationDataSize | Доля обучающего набора данных, который необходимо выделить для целей проверки. Значения между (0.0, 1.0) Применяется, если набор данных проверки не указан. |
int |
weightColumnName | Имя столбца веса образца. Автоматизированное машинное обучение поддерживает взвешанный столбец в качестве входных данных, что приводит к тому, что строки в данных будут взвешированы вверх или вниз. | струна |
РегрессияTrainingSettings
Имя | Описание | Ценность |
---|---|---|
allowedTrainingAlgorithms | Разрешенные модели для задачи регрессии. | Массив строк, содержащий любой из: "DecisionTree" ElasticNet "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "RandomForest" "ДИНАМ" "XGBoostRegressor" |
blockedTrainingAlgorithms | Заблокированные модели для задачи регрессии. | Массив строк, содержащий любой из: "DecisionTree" ElasticNet "ExtremeRandomTrees" 'GradientBoosting' KNN "ЛассоЛарс" LightGBM "RandomForest" "ДИНАМ" "XGBoostRegressor" |
enableDnnTraining | Включите рекомендацию моделей DNN. | bool |
enableModelExplainability | Пометка для включения объяснимости для оптимальной модели. | bool |
enableOnnxCompatibleModels | Флаг включения совместимых моделей onnx. | bool |
enableStackEnsemble | Включите запуск ансамбля стека. | bool |
enableVoteEnsemble | Включите запуск ансамбля голосования. | bool |
ensembleModelDownloadTimeout | Во время создания модели VotingEnsemble и StackEnsemble скачиваются несколько встроенных моделей из предыдущих дочерних запусков. Настройте этот параметр с более высоким значением, чем 300 с, если требуется больше времени. |
струна |
stackEnsembleSettings | Параметры ансамбля стека для выполнения ансамбля стека. | StackEnsembleSettings |
ResourceBaseProperties
Имя | Описание | Ценность |
---|
ResourceBaseProperties
Имя | Описание | Ценность |
---|
ResourceBaseTags
Имя | Описание | Ценность |
---|
ResourceBaseTags
Имя | Описание | Ценность |
---|
ResourceConfigurationProperties
Имя | Описание | Ценность |
---|
ВыборкаAlgorithm
Имя | Описание | Ценность |
---|---|---|
выборкаAlgorithmType | Установите значение Bayesian для типа BayesianSamplingAlgorithm. Установите значение Grid для типа GridSamplingAlgorithm. Установите значение Random для типа RandomSamplingAlgorithm. | "Байезиан" "Сетка" "Случайный" (обязательный) |
ScheduleActionBase
Имя | Описание | Ценность |
---|---|---|
actionType | Установите значение CreateJob для типа JobScheduleAction. Установите значение InvokeBatchEndpoint для типа EndpointScheduleAction. | CreateJob InvokeBatchEndpoint (обязательно) |
ScheduleProperties
Имя | Описание | Ценность |
---|---|---|
действие | [Обязательный] Указывает действие расписания | ScheduleActionBase (обязательно) |
описание | Текст описания ресурса. | струна |
displayName | Отображаемое имя расписания. | струна |
isEnabled | Включен ли расписание? | bool |
свойства | Словарь свойств ресурса. | ResourceBaseProperties |
Теги | Словарь тегов. Теги можно добавлять, удалять и обновлять. | ResourceBaseTags |
триггер | [Обязательный] Указывает сведения о триггере | TriggerBase (обязательно) |
Сезонность
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа autoSeasonality. Установите значение Custom для типа CustomSeasonality. | "Авто" "Custom" (обязательный) |
StackEnsembleSettings
Имя | Описание | Ценность |
---|---|---|
stackMetaLearnerKWargs | Необязательные параметры для передачи инициализатору метаучителя. | любой |
stackMetaLearnerTrainPercentage | Указывает пропорцию обучающего набора (при выборе типа обучения и проверки обучения), зарезервированного для обучения метаучителя. Значение по умолчанию — 0.2. | int |
stackMetaLearnerType | Метаобучатель — это модель, обученная на выходных данных отдельных разнородных моделей. | ElasticNet "ElasticNetCV" LightGBMClassifier LightGBMRegressor "LinearRegression" "LogisticRegression" "LogisticRegressionCV" "Нет" |
SweepJob
Имя | Описание | Ценность |
---|---|---|
ранняятерминация | Политики раннего завершения позволяют отменять низкопроизводительные запуски до их завершения | EarlyTerminationPolicy |
Входы | Сопоставление входных привязок данных, используемых в задании. | SweepJobInputs |
jobType | [Обязательный] Указывает тип задания. | "Очистка" (обязательно) |
Ограничения | Ограничение задания очистки. | SweepJobLimits |
объективный | [Обязательный] Цель оптимизации. | Objective (обязательно) |
Выходы | Сопоставление привязок выходных данных, используемых в задании. | |
выборкаAlgorithm | [Обязательный] Алгоритм выборки гиперпараметров | ВыборкаAlgorithm (обязательно) |
searchSpace | [Обязательный] Словарь, содержащий каждый параметр и его распределение. Ключ словаря — это имя параметра | любой (обязательный) |
испытание | [Обязательный] Определение компонента пробной версии. | TrialComponent (обязательно) |
SweepJobInputs
Имя | Описание | Ценность |
---|
SweepJobLimits
Имя | Описание | Ценность |
---|---|---|
jobLimitsType | [Обязательный] Тип JobLimit. | "Command" "Очистка" (обязательно) |
maxConcurrentTrials | Максимальное число параллельных пробных версий задания очистки. | int |
maxTotalTrials | Максимальное количество пробных версий заданий для очистки. | int |
Времени ожидания | Максимальная длительность выполнения в формате ISO 8601, после которой задание будет отменено. Поддерживается только длительность с точностью до секунд. | струна |
trialTimeout | Значение времени ожидания пробной версии задания подметки. | струна |
SweepJobOutputs
Имя | Описание | Ценность |
---|
TableVerticalFeaturizationSettings
Имя | Описание | Ценность |
---|---|---|
заблокированныеTransformers | Эти преобразователи не должны использоваться в признаках. | Массив строк, содержащий любой из: "CatTargetEncoder" CountVectorizer HashOneHotEncoder 'LabelEncoder' 'NaiveBayes' OneHotEncoder TextTargetEncoder 'TfIdf' 'WoETargetEncoder' "WordEmbedding" |
columnNameAndTypes | Словарь имени столбца и его типа (int, float, string, datetime и т. д.). | TableVerticalFeaturizationSettingsColumnNameAndTypes |
datasetLanguage | Язык набора данных, полезный для текстовых данных. | струна |
enableDnnFeaturization | Определяет, следует ли использовать признаки на основе Dnn для признаков данных. | bool |
режим | Режим признаков . Пользователь может сохранить режим авто по умолчанию, и AutoML будет заботиться о необходимом преобразовании данных на этапе признаков. Если выбрано значение "Выкл.", то нет признаков. Если выбран параметр Custom, пользователь может указать дополнительные входные данные, чтобы настроить способ выполнения признаков. |
"Авто" "Custom" "Выкл. |
преобразовательParams | Пользователь может указать дополнительные преобразователи, которые будут использоваться вместе со столбцами, к которым он будет применяться, и параметрами для конструктора преобразователя. | TableVerticalFeaturizationSettingsTransformerParams |
TableVerticalFeaturizationSettingsColumnNameAndTypes
Имя | Описание | Ценность |
---|
TableVerticalFeaturizationSettingsTransformerParams
Имя | Описание | Ценность |
---|
TableVerticalLimitSettings
Имя | Описание | Ценность |
---|---|---|
enableEarlyTermination | Включите досрочное завершение, определяет, будет ли autoMLJob завершаться рано, если в последних 20 итерациях не будет улучшена оценка. | bool |
exitScore | Оценка выхода для задания AutoML. | int |
maxConcurrentTrials | Максимальное число одновременных итераций. | int |
maxCoresPerTrial | Максимальное число ядер на итерацию. | int |
maxTrials | Количество итераций. | int |
Времени ожидания | Время ожидания задания AutoML. | струна |
trialTimeout | Время ожидания итерации. | струна |
TargetLags
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoTargetLags. Установите значение Custom для типа CustomTargetLags. | "Авто" "Custom" (обязательный) |
TargetRollingWindowSize
Имя | Описание | Ценность |
---|---|---|
режим | Установите значение Auto для типа AutoTargetRollingWindowSize. Установите значение Custom для типа CustomTargetRollingWindowSize. | "Авто" "Custom" (обязательный) |
TensorFlow
Имя | Описание | Ценность |
---|---|---|
distributionType | [Обязательный] Указывает тип платформы распространения. | TensorFlow (обязательный) |
parameterServerCount | Количество задач сервера параметров. | int |
workerCount | Число рабочих ролей. Если этот параметр не указан, по умолчанию используется число экземпляров. | int |
TextClassification
Имя | Описание | Ценность |
---|---|---|
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | NlpVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | NlpVerticalLimitSettings |
primaryMetric | Основная метрика для задачи Text-Classification. | "Точность" "AUCWeighted" "AveragePrecisionScoreWeighted" "NormMacroRecall" "PrecisionScoreWeighted" |
taskType | [Обязательный] Тип задачи для AutoMLJob. | TextClassification (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
TextClassificationMultilabel
Имя | Описание | Ценность |
---|---|---|
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | NlpVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | NlpVerticalLimitSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | TextClassificationMultilabel (обязательный) |
validationData | Входные данные проверки. | MLTableJobInput |
TextNer
Имя | Описание | Ценность |
---|---|---|
featurizationSettings | Входные данные признаков, необходимые для задания AutoML. | NlpVerticalFeaturizationSettings |
limitSettings | Ограничения выполнения для AutoMLJob. | NlpVerticalLimitSettings |
taskType | [Обязательный] Тип задачи для AutoMLJob. | TextNER (обязательно) |
validationData | Входные данные проверки. | MLTableJobInput |
TrialComponent
Имя | Описание | Ценность |
---|---|---|
codeId | Идентификатор ресурса ARM ресурса ресурса кода. | струна |
команда | [Обязательный] Команда, выполняемая при запуске задания. Например. "Python train.py" | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
распределение | Конфигурация распределения задания. Если задано, это должен быть один из Mpi, Tensorflow, PyTorch или NULL. | distributionConfiguration |
environmentId | [Обязательный] Идентификатор ресурса ARM спецификации среды для задания. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
environmentVariables | Переменные среды, включенные в задание. | TrialComponentEnvironmentVariables |
ресурсы | Конфигурация вычислительных ресурсов для задания. | JobResourceConfiguration |
TrialComponentEnvironmentVariables
Имя | Описание | Ценность |
---|
TriggerBase
Имя | Описание | Ценность |
---|---|---|
endTime | Указывает время окончания расписания в ISO 8601, но без смещения в формате UTC. См. https://en.wikipedia.org/wiki/ISO_8601. Формат перекомментированного формата будет "2022-06-01T00:00:01" Если это не так, расписание будет выполняться на неопределенный срок |
струна |
startTime | Указывает время начала расписания в формате ISO 8601, но без смещения в формате UTC. | струна |
часовой пояс | Указывает часовой пояс, в котором выполняется расписание. Часовой пояс Должен соответствовать формату часового пояса Windows. Ссылка: /windows-hardware/manufacture/desktop/default-time-zones?view=windows-11 |
струна |
triggerType | Установите значение Cron для типа CronTrigger. Установите значение "Повторение" для типа повторения. | "Cron" "Повторение" (обязательно) |
TritonModelJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "triton_model" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
TritonModelJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "triton_model" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
УсечениеSelectionPolicy
Имя | Описание | Ценность |
---|---|---|
policyType | [Обязательный] Имя конфигурации политики | УсечениеSelection (обязательно) |
усечениеPercentage | Процент выполнения для отмены по каждому интервалу оценки. | int |
UriFileJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "uri_file" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
UriFileJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "uri_file" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
UriFolderJobInput
Имя | Описание | Ценность |
---|---|---|
jobInputType | [Обязательный] Указывает тип задания. | "uri_folder" (обязательно) |
режим | Режим доставки входных ресурсов. | 'Direct' "Скачать" EvalDownload EvalMount ReadOnlyMount ReadWriteMount |
ури | [Обязательный] URI входных ресурсов. | струна Ограничения целостности: Минимальная длина = 1 Pattern = [a-zA-Z0-9_] (обязательно) |
UriFolderJobOutput
Имя | Описание | Ценность |
---|---|---|
jobOutputType | [Обязательный] Указывает тип задания. | "uri_folder" (обязательно) |
режим | Режим доставки выходных ресурсов. | ReadWriteMount "Отправить" |
ури | URI выходного ресурса. | струна |
UserIdentity
Имя | Описание | Ценность |
---|---|---|
identityType | [Обязательный] Указывает тип платформы удостоверений. | UserIdentity (обязательно) |