Lição 4: Explorando os modelos de mala direta (Tutorial de mineração de dados básico)
Aplicável a: SQL Server 2016 Preview
Depois que os modelos do seu projeto tiverem sido processados, você poderá explorá-los para procurar por tendências que sejam interessantes. Como padrões podem ser complexos e difíceis se analisarmos somente os números, a Mineração de Dados do SQL Server oferece algumas ferramentas visuais que o ajudam a investigar os dados e a compreender as regras e as relações que os algoritmos encontraram nos dados. Você também pode usar uma variedade de testes de precisão para validar seu conjunto de dados ou para descobrir qual o melhor modelo antes de implantá-lo.
Quando você usa SQL Server Data Tools (SSDT) para explorar seus modelos, cada modelo criado é listado no Visualizador do modelo de mineração guia no Designer de mineração de dados. Você pode usar os visualizadores para explorar os modelos. Estes visualizadores também estão disponíveis no SQL Server Management Studio.
Cada algoritmo usado para criar um modelo no Analysis Services retorna um tipo diferente de resultado. Consequentemente, o Analysis Services fornece visualizadores personalizados para cada tipo de modelo de aprendizado automatizado.
Para obter mais detalhes, Analysis Services também fornece um visualizador de HTML, chamado de Visualizador de árvore de conteúdo genérica, que exibe informações detalhadas sobre os dados de modelo e os padrões que foram encontrados em um formato semitabular. Para obter mais informações, consulte Procurar um modelo usando o Visualizador de Árvore de Conteúdo Genérico da Microsoft.
Nesta lição, você examinará os resultados dos seus três modelos. Cada tipo de modelo se baseia em um algoritmo diferente e oferece ideias diferentes sobre os dados.
O modelo Árvore de Decisão mostra os fatores que influenciam a compra de uma bicicleta.
O modelo Clustering agrupa seus clientes por atributos que incluem seu comportamento na compra de bicicletas e outros atributos selecionados.
O modelo Naive Baynes permite que você explore o relacionamento entre os atributos diferentes.
Consulte os tópicos a seguir para saber mais sobre os visualizadores do modelo de mineração.
Explorando o modelo de árvore de decisão e 40; Tutorial de mineração de dados básicos e 41;
Explorando o modelo de Clustering e 40; Tutorial de mineração de dados básicos e 41;
Explorando o modelo Naive Bayes & #40. Tutorial de mineração de dados básicos e 41;
Todos os três modelos podem ser exibidos usando o Visualizador de árvore de conteúdo genérica, para extrair fórmulas, valores de dados e assim por diante.
Primeira tarefa na lição
Explorando o modelo de árvore de decisão e 40; Tutorial de mineração de dados básicos e 41;
Lição anterior
Lição 3: Adicionando e processando modelos
Próxima lição
Lição 5: Testando modelos & #40. Tutorial de mineração de dados básicos e 41;
Consulte também
Tarefas e instruções do visualizador do modelo de mineração
Visualizadores do Modelo de Mineração de Dados