Consultando um modelo Naive Bayes (Analysis Services - Mineração de Dados)
Ao criar uma consulta para um modelo de mineração de dados, você pode criar uma consulta de conteúdo, que fornece detalhes de padrões encontrados em análises, ou uma consulta de previsão, que usa os padrões no modelo para fazer previsões para novos dados. Você também pode recuperar metadados sobre o modelo usando uma consulta no conjunto de linhas do esquema de mineração de dados. Esta seção explica como criar essas consultas para modelos baseados no algoritmo Naive Bayes da Microsoft.
Consultas de conteúdo
Obtendo metadados do modelo usando DMX
Recuperando um resumo dos dados de treinamento
Localizando mais informações sobre atributos
Usando procedimentos armazenados do sistema
Consultas de previsão
Resultados de previsão usando uma consulta singleton
Retornando previsões com probabilidade e suporte
Prevendo associações
Localizando informações sobre o modelo Naive Bayes
O conteúdo de um modelo Naive Bayes fornece informações agregadas sobre a distribuição dos valores nos dados de treinamento. Você também pode recuperar informações sobre os metadados do modelo criando consultas nos conjuntos de linhas do esquema de mineração de dados.
Voltar ao início
Exemplo de consulta 1: Obtendo metadados do modelo usando DMX
Ao examinar o conjunto de linhas do esquema de mineração de dados, você pode localizar metadados para o modelo. Isso pode incluir quando o modelo foi criado, quando o modelo foi processado pela última vez , o nome da estrutura de mineração em que o modelo se baseia e o nome das colunas usadas como o atributo previsível. Você também pode retornar os parâmetros que foram usados quando o modelo foi criado.
SELECT MODEL_CATALOG, MODEL_NAME, DATE_CREATED, LAST_PROCESSED,
SERVICE_NAME, PREDICTION_ENTITY, FILTER
FROM $system.DMSCHEMA_MINING_MODELS
WHERE MODEL_NAME = 'TM_NaiveBayes_Filtered'
Resultados do exemplo:
MODEL_CATALOG |
AdventureWorks |
MODEL_NAME |
TM_NaiveBayes_Filtered |
DATE_CREATED |
3/1/2008 19:15 |
LAST_PROCESSED |
3/2/2008 20:00 |
SERVICE_NAME |
Microsoft_Naive_Bayes |
PREDICTION_ENTITY |
Bike Buyer,Yearly Income |
FILTER |
[Region] = 'Europe' OR [Region] = 'North America' |
O modelo usado para este exemplo se baseia no modelo Naive Bayes que você cria no Tutorial de mineração de dados básico, mas foi modificado com a inclusão de um segundo atributo previsível e a aplicação de um filtro nos dados de treinamento.
Voltar ao início
Exemplo de consulta 2: Recuperando um resumo dos dados de treinamento
Em um modelo Naive Bayes, o nó de estatísticas marginais armazena informações agregadas sobre a distribuição dos valores nos dados de treinamento. Esse resumo é prático e você não precisa criar consultas SQL nos dados de treinamento para localizar as mesmas informações.
O exemplo a seguir usa uma consulta de conteúdo DMX para recuperar os dados do nó (NODE_TYPE = 24). Como as estatísticas são armazenadas em uma tabela aninhada, a palavra-chave FLATTENED é usada para facilitar a exibição dos resultados.
SELECT FLATTENED MODEL_NAME,
(SELECT ATTRIBUTE_NAME, ATTRIBUTE_VALUE, [SUPPORT], [PROBABILITY], VALUETYPE FROM NODE_DISTRIBUTION) AS t
FROM TM_NaiveBayes.CONTENT
WHERE NODE_TYPE = 26
Observação |
---|
Você deve colocar os nomes das colunas SUPPORT e PROBABILITY entre colchetes para distingui-los das palavras-chave MDX reservadas com os mesmos nomes. |
Resultados parciais:
MODEL_NAME |
t.ATTRIBUTE_NAME |
t.ATTRIBUTE_VALUE |
t.SUPPORT |
t.PROBABILITY |
t.VALUETYPE |
---|---|---|---|---|---|
TM_NaiveBayes |
Bike Buyer |
Missing |
0 |
0 |
1 |
TM_NaiveBayes |
Bike Buyer |
0 |
8869 |
0.507263784 |
4 |
TM_NaiveBayes |
Bike Buyer |
1 |
8615 |
0.492736216 |
4 |
TM_NaiveBayes |
Sexo |
Missing |
0 |
0 |
1 |
TM_NaiveBayes |
Sexo |
T |
8656 |
0.495081217 |
4 |
TM_NaiveBayes |
Sexo |
T |
8828 |
0.504918783 |
4 |
Por exemplo, esses resultados informam o número de casos de treinamento para cada valor discreto (VALUETYPE = 4), junto com a probabilidade calculada, ajustada para valores ausentes (VALUETYPE = 1).
Para uma definição dos valores fornecidos na tabela NODE_DISTRIBUTION em um modelo Naive Bayes, consulte Conteúdo do modelo de mineração para modelos Naive Bayes (Analysis Services – Mineração de Dados). Para obter mais informações sobre como o suporte e os cálculos de probabilidade são afetados por valores ausentes, consulte Valores ausentes (Analysis Services - Mineração de dados).
Voltar ao início
Exemplo de consulta 3: Localizando mais informações sobre atributos
Como um modelo Naive Bayes freqüentemente contém informações complexas sobre as relações entre atributos diferentes, a maneira mais fácil de exibir essas relações é usar o Visualizador Naive Bayes da Microsoft. No entanto, você pode criar consultas DMX para retornar os dados.
O exemplo a seguir mostra como retornar informações do modelo sobre um atributo específico, Region.
SELECT NODE_TYPE, NODE_CAPTION,
NODE_PROBABILITY, NODE_SUPPORT, MSOLAP_NODE_SCORE
FROM TM_NaiveBayes.CONTENT
WHERE ATTRIBUTE_NAME = 'Region'
Esta consulta retorna dois tipos de nós: o nó que representa o atributo de entrada (NODE_TYPE = 10) e nós para cada valor do atributo (NODE_TYPE = 11). A legenda do nó é usada para identificar o nó, em vez do nome do nó, porque a legenda mostra o nome e o valor do atributo.
NODE_TYPE |
NODE_CAPTION |
NODE_PROBABILITY |
NODE_SUPPORT |
MSOLAP_NODE_SCORE |
NODE_TYPE |
---|---|---|---|---|---|
10 |
Bike Buyer -> Region |
1 |
17484 |
84.51555875 |
10 |
11 |
Bike Buyer ->Region = Missing |
0 |
0 |
0 |
11 |
11 |
Bike Buyer -> Region = North America |
0.508236102 |
8886 |
0 |
11 |
11 |
Bike Buyer -> Region = Pacific |
0.193891558 |
3390 |
0 |
11 |
11 |
Bike Buyer -> Region = Europe |
0.29787234 |
5208 |
0 |
11 |
Algumas das colunas armazenadas nos nós são iguais àquelas que você pode obter com base nos nós de estatísticas marginais, como a pontuação de probabilidade do nó e os valores de suporte do nó. No entanto, MSOLAP_NODE_SCORE é um valor especial fornecido apenas para os nós de atributo de entrada e indica a importância relativa desse atributo no modelo. Você pode ver grande parte das mesmas informações no painel Rede de Dependências do visualizador; no entanto, o visualizador não fornece pontuações.
A seguinte consulta retorna as pontuações de importância de todos os atributos no modelo:
SELECT NODE_CAPTION, MSOLAP_NODE_SCORE
FROM TM_NaiveBayes.CONTENT
WHERE NODE_TYPE = 10
ORDER BY MSOLAP_NODE_SCORE DESC
Resultados do exemplo:
NODE_CAPTION |
MSOLAP_NODE_SCORE |
---|---|
Bike Buyer -> Total Children |
181.3654836 |
Bike Buyer -> Commute Distance |
179.8419482 |
Bike Buyer -> English Education |
156.9841928 |
Bike Buyer -> Number Children At Home |
111.8122599 |
Bike Buyer -> Region |
84.51555875 |
Bike Buyer -> Marital Status |
23.13297354 |
Bike Buyer -> English Occupation |
2.832069191 |
Ao navegar no conteúdo do modelo no Visualizador de Árvore de Conteúdo Genérica da Microsoft, você terá uma noção melhor de quais estatísticas devem ser interessantes. Alguns exemplos simples foram demonstrados aqui; talvez você precise executar mais freqüentemente várias consultas ou armazenar os resultados e processá-los no cliente.
Voltar ao início
Exemplo de consulta 4: Usando procedimentos armazenados de sistema
Além de escrever suas próprias consultas de conteúdo, você pode usar alguns procedimentos armazenados de sistema do Analysis Services para explorar os resultados. Para usar um procedimento armazenado de sistema, use a palavra-chave CALL como prefixo do nome do procedimento:
CALL GetPredictableAttributes ('TM_NaiveBayes')
Resultados parciais:
ATTRIBUTE_NAME |
NODE_UNIQUE_NAME |
---|---|
Bike Buyer |
100000001 |
Observação |
---|
Esses procedimentos armazenados de sistema destinam-se à comunicação interna entre o servidor do Analysis Services e o cliente e só devem ser usados para conveniência durante o desenvolvimento e o teste de modelos de mineração. Ao criar consultas para um sistema de produção, você deverá sempre escrever suas próprias consultas usando DMX, AMO ou XMLA. |
Para obter mais informações sobre procedimentos armazenados de sistema do Analysis Services, consulte Procedimentos armazenados da mineração de dados (Analysis Services - Data Mining).
Voltar ao início
Fazendo previsões usando o modelo
Em geral, algoritmo Naive Bayes da Microsoft é menos usado para previsão do que para exploração das relações entre os atributos de entrada e previsíveis. No entanto, o modelo dá suporte ao uso de funções de previsão para previsão e associação.
Exemplo de consulta 5: Resultados de previsão que usam uma consulta singleton
A consulta a seguir usa uma consulta singleton para fornecer um novo valor e prever, com base no modelo, se um cliente com essas características provavelmente comprará um modelo. A maneira mais fácil de criar uma consulta singleton em um modelo de regressão é usando a caixa de diálogo Entrada de Consulta Singleton. Por exemplo, você pode criar a consulta DMX a seguir selecionando o modelo TM_NaiveBayes, escolhendo Consulta Singleton e selecionando valores nas listas suspensas para [Commute Distance] e Gender.
SELECT
Predict([TM_NaiveBayes].[Bike Buyer])
FROM
[TM_NaiveBayes]
NATURAL PREDICTION JOIN
(SELECT '5-10 Miles' AS [Commute Distance],
'F' AS [Gender]) AS t
Resultados do exemplo:
Expressão |
---|
0 |
A função de previsão retorna o valor mais provável, neste caso, 0, que significa que esse tipo de cliente provavelmente comprará uma bicicleta.
Voltar ao início
Exemplo de consulta 6: Retornando previsões com probabilidade e suporte
Além de prever um resultado, com freqüência você deseja saber o quão sólida é a previsão. A consulta a seguir usa a mesma consulta singleton que o exemplo anterior, mas adiciona a função de previsão, PredictHistogram (DMX), para retornar uma tabela aninhada que contém estatísticas que dão suporte à previsão.
SELECT
Predict([TM_NaiveBayes].[Bike Buyer]),
PredictHistogram([TM_NaiveBayes].[Bike Buyer])
FROM
[TM_NaiveBayes]
NATURAL PREDICTION JOIN
(SELECT '5-10 Miles' AS [Commute Distance],
'F' AS [Gender]) AS t
Resultados do exemplo:
Bike Buyer |
$SUPPORT |
$PROBABILITY |
$ADJUSTEDPROBABILITY |
$VARIANCE |
$STDEV |
---|---|---|---|---|---|
0 |
10161.5714 |
0.581192599 |
0.010530981 |
0 |
0 |
1 |
7321.428768 |
0.418750215 |
0.008945684 |
0 |
0 |
|
0.999828444 |
5.72E-05 |
5.72E-05 |
0 |
0 |
A linha final na tabela mostra os ajustes para dar suporte e probabilidade ao valor ausente. Os valores de variação e desvio padrão sempre são 0, pois os modelos Naive Bayes não podem modelar valores contínuos.
Voltar ao início
Exemplo de consulta 7: Prevendo associações
O algoritmo Naive Bayes da Microsoft poderá ser usado para análise de associação se a estrutura de mineração contiver uma tabela aninhada com o atributo previsível como a chave. Por exemplo, você pode criar um modelo Naive Bayes usando a estrutura de mineração criada na Lição 3: Criando um cenário de cesta de compras (Tutorial de mineração de dados intermediário) do tutorial de mineração de dados. O modelo usado neste exemplo foi modificado para adicionar informações sobre renda e região do cliente na tabela de casos.
O exemplo de consulta a seguir mostra uma consulta singleton que prevê produtos relacionados às compras do produto, 'Road Tire Tube'. Você pode usar essas informações para recomendar produtos a um tipo de cliente específico.
SELECT PredictAssociation([Association].[v Assoc Seq Line Items])
FROM [Association_NB]
NATURAL PREDICTION JOIN
(SELECT 'High' AS [Income Group],
'Europe' AS [Region],
(SELECT 'Road Tire Tube' AS [Model])
AS [v Assoc Seq Line Items])
AS t
Resultados parciais:
Modelo |
---|
Women's Mountain Shorts |
Water Bottle |
Touring-3000 |
Touring-2000 |
Touring-1000 |
Voltar ao início
Lista de funções
Todos os algoritmos Microsoft fornecem suporte a um conjunto comum de funções. No entanto, o algoritmo Naive Bayes da Microsoft dá suporte às funções adicionais relacionadas na tabela a seguir.
Para obter uma lista das funções comuns a todos os algoritmos Microsoft, consulte Referência de algoritmo (Analysis Services – Data Mining). Para obter a sintaxe de funções específicas, consulte Referência de função de DMX (Data Mining Extensions).
Histórico de alterações
Conteúdo atualizado |
---|
Adicionados links de navegação para facilitar a revisão de exemplos de consultas. |