Compartilhar via


Transformação de dados – escala e redução

Importante

O suporte para o Machine Learning Studio (clássico) terminará em 31 de agosto de 2024. É recomendável fazer a transição para o Azure Machine Learning até essa data.

A partir de 1º de dezembro de 2021, você não poderá criar recursos do Machine Learning Studio (clássico). Até 31 de agosto de 2024, você pode continuar usando os recursos existentes do Machine Learning Studio (clássico).

A documentação do ML Studio (clássico) está sendo desativada e pode não ser atualizada no futuro.

este artigo descreve os módulos no Machine Learning Studio (clássico) que podem ajudá-lo a trabalhar com dados numéricos. Para o aprendizado de máquina, as tarefas de dados comuns incluem recorte, compartimentalização e normalização de valores numéricos. Outros módulos dão suporte à redução de dimensionalidade.

Observação

aplica-se a: somente Machine Learning Studio (clássico)

Módulos semelhantes do tipo "arrastar e soltar" estão disponíveis no designer do Azure Machine Learning.

Modelando dados numéricos

Tarefas como normalização, compartimentalização ou redistribuição de variáveis numéricas são uma parte importante da preparação de dados para o aprendizado de máquina. Os módulos neste grupo dão suporte às seguintes tarefas de preparação de dados:

  • Agrupamento de dados em compartimentos de tamanhos ou distribuições variados.
  • Removendo exceções ou alterando seus valores.
  • Normalizar um conjunto de valores numéricos em um intervalo específico.
  • Criando um conjunto compacto de colunas de recursos de um conjunto de um DataSet de alta dimensão.

Lista de módulos

A categoria transformação de dados-escala e redução inclui os seguintes módulos:

Confira também