Terminologia do Microsoft Fabric
Aprenda as definições de termos usados no Microsoft Fabric, incluindo termos específicos para Fabric Data Warehouse, Fabric Data Engineering, Fabric Data Science, Real-Time Intelligence, Data Factory e Power BI.
Termos gerais
Capacidade : Capacidade é um conjunto dedicado de recursos que está disponível em um determinado momento para ser usado. A capacidade define a capacidade de um recurso para executar uma atividade ou produzir resultados. Itens diferentes consomem capacidade diferente em um determinado momento. O Fabric oferece capacidade por meio do Fabric SKU e Trials. Para obter mais informações, consulte O que é capacidade?
Experiência: Uma coleção de recursos direcionados a uma funcionalidade específica. As experiências do Fabric incluem Fabric Data Warehouse, Fabric Data Engineering, Fabric Data Science, Real-Time Intelligence, Data Factory e Power BI.
Item: Um item é um conjunto de recursos dentro de uma experiência. Os usuários podem criá-los, editá-los e excluí-los. Cada tipo de item fornece recursos diferentes. Por exemplo, a experiência em Engenharia de Dados inclui os itens lakehouse, notebook e definição de trabalhos Spark.
locatário: Um locatário é uma instância única do Fabric para uma organização e está alinhado com um ID do Microsoft Entra.
Workspace: Um espaço de trabalho é uma coleção de itens que reúne diferentes funcionalidades em um único ambiente projetado para colaboração. Ele atua como um contêiner que usa capacidade para o trabalho que é executado e fornece controles para quem pode acessar os itens nele. Por exemplo, em um espaço de trabalho, os usuários criam relatórios, blocos de anotações, modelos semânticos, etc. Para obter mais informações, consulte artigo Workspaces.
Engenharia de dados de malha
Lakehouse: Um lakehouse é uma coleção de arquivos, pastas e tabelas que representam uma base de dados num data lake usado pelos motores Apache Spark e SQL para processamento de big data. Um lakehouse inclui recursos aprimorados para transações ACID ao usar as tabelas formatadas Delta de código aberto. O item lakehouse está hospedado numa pasta de área de trabalho exclusiva no Microsoft OneLake. Ele contém arquivos em vários formatos (estruturados e não estruturados) organizados em pastas e subpastas. Para obter mais informações, consulte O que é uma casa de lago?
Notebook: Um notebook Fabric é uma ferramenta de programação interativa multilíngua com diversas funcionalidades. O que inclui a criação de código e markdown, execução e monitoramento de um trabalho do Spark, visualização e visualização de resultados e colaboração com a equipe. Ajuda engenheiros de dados e cientistas de dados a explorar e processar dados, e construir experimentos de aprendizado de máquina com tanto experiência em programação tradicional quanto em plataformas de baixo-código. Pode ser facilmente transformado numa atividade de canalização para orquestração.
aplicativo Spark: Um aplicativo Apache Spark é um programa escrito por um usuário usando uma das linguagens de API do Spark (Scala, Python, Spark SQL ou Java) ou linguagens adicionadas pela Microsoft (.NET com C# ou F#). Quando um aplicativo é executado, ele é dividido em um ou mais trabalhos do Spark que são executados em paralelo para processar os dados mais rapidamente. Para obter mais informações, consulte monitorização de aplicações Spark.
trabalho do Apache Spark: Um trabalho do Spark faz parte de uma aplicação Spark que é executada em paralelo com outros trabalhos na aplicação. Um trabalho consiste em várias tarefas. Para obter mais informações, consulte monitoramento de trabalhos do Spark.
Definição de trabalho do Apache Spark: Uma definição de trabalho do Spark é um conjunto de parâmetros, definido pelo usuário, indicando como um aplicativo Spark deve ser executado. Ele permite que você envie trabalhos em lote ou streaming para o cluster do Spark. Para obter mais informações, consulte O que é uma definição de trabalho do Apache Spark?
V-order: Uma otimização de gravação para o formato de arquivo parquet que permite leituras rápidas e fornece eficiência de custos e melhor desempenho. Todos os mecanismos de malha gravam arquivos de parquet ordenados em V por padrão.
Data Factory
Connector: Data Factory oferece um rico conjunto de conectores que permitem que você se conecte a diferentes tipos de armazenamentos de dados. Uma vez conectado, você pode transformar os dados. Para obter mais informações, consulte conectores .
Pipeline de dados: No Data Factory, um pipeline de dados é usado para orquestrar a movimentação e transformação dos dados. Esses pipelines são diferentes dos pipelines de implantação no Fabric. Para obter mais informações, consulte Pipelines na visão geral do Data Factory.
Dataflow Gen2: Os Dataflows fornecem uma interface de baixo-código para ingerir dados de centenas de fontes de dados e transformar os seus dados. Os fluxos de dados na malha são chamados de Dataflow Gen2. O Dataflow Gen1 existe no Power BI. O Dataflow Gen2 oferece recursos extras em comparação com os fluxos de dados no Azure Data Factory ou no Power BI. Não é possível atualizar de Gen1 para Gen2. Para mais informações, consulte a seção de fluxos de dados na visão geral do Data Factory.
Trigger: Um recurso de automação no Data Factory que inicia pipelines com base em condições específicas, como agendas ou disponibilidade de dados.
Ciência de dados de malha
Data Wrangler: Data Wrangler é uma ferramenta baseada em notebook que oferece aos usuários uma experiência imersiva para conduzir análises exploratórias de dados. O recurso combina uma exibição de dados em forma de grade com estatísticas de resumo dinâmicas e um conjunto de operações comuns de limpeza de dados, todas disponíveis com alguns ícones selecionados. Cada operação gera código que pode ser salvo de volta no bloco de anotações como um script reutilizável.
Experimento: Um experimento de aprendizado de máquina é a principal unidade de organização e controle para todas as execuções de aprendizado de máquina relacionadas. Para obter mais informações, consulte experimentos de aprendizado de máquina no Microsoft Fabric.
Modelo : Um modelo de aprendizado de máquina é um arquivo treinado para reconhecer certos tipos de padrões. Você treina um modelo sobre um conjunto de dados e fornece a ele um algoritmo que ele usa para raciocinar e aprender com esse conjunto de dados. Para obter mais informações, consulte Modelo de aprendizado de máquina.
Run: Uma execução corresponde a uma única execução do código do modelo. Em MLflow, o rastreamento é baseado em experimentos e execuções.
Armazém de Dados de Plataforma
ponto de extremidade de análise SQL: Cada Lakehouse tem um ponto de extremidade de análise SQL que permite a um utilizador consultar dados de tabelas delta utilizando TSQL através de TDS. Para obter mais informações, consulte ponto de acesso de análise SQL.
Fabric Data Warehouse: O Fabric Data Warehouse funciona como um data warehouse tradicional e suporta todos os recursos transacionais do T-SQL que você esperaria de um data warehouse corporativo. Para obter mais informações, consulte Fabric Data Warehouse.
Real-Time Inteligência
Activator: Activator é uma ferramenta de desenvolvimento sem código ou com pouco código que permite criar alertas, gatilhos e ações nos seus dados. O Activator é usado para criar alertas em seus fluxos de dados. Para obter mais informações, consulte Activator.
Eventhouse: Eventhouses fornecem uma solução para lidar e analisar grandes volumes de dados, particularmente em cenários que exigem análise e exploração em tempo real. Eles são projetados para lidar com fluxos de dados em tempo real de forma eficiente, o que permite que as organizações ingeram, processem e analisem dados quase em tempo real. Um único espaço de trabalho pode conter várias Eventhouses, uma casa de eventos pode conter vários bancos de dados KQL e cada banco de dados pode conter várias tabelas. Para obter mais informações, consulte a visão geral do Eventhouse.
Eventstream: O recurso de fluxos de eventos do Microsoft Fabric fornece um local centralizado na plataforma Fabric para capturar, transformar e rotear eventos em tempo real para destinos com uma experiência sem código. Um fluxo de eventos consiste em várias fontes de dados de streaming, destinos de ingestão e um processador de eventos quando a transformação é necessária. Para obter mais informações, consulte fluxos de eventos do Microsoft Fabric.
Banco de Dados KQL: O Banco de Dados KQL contém dados em um formato no qual você pode executar consultas KQL. As bases de dados KQL são itens de uma Eventhouse. Para obter mais informações, consulte base de dados KQL.
conjunto de consultas KQL: O conjunto de consultas KQL é o item usado para executar consultas, exibir resultados e manipular resultados de consulta em dados do banco de dados do Data Explorer. O conjunto de consultas inclui os bancos de dados e tabelas, as consultas e os resultados. O KQL Queryset permite que você salve consultas para uso futuro ou exporte e compartilhe consultas com outras pessoas. Para obter mais informações, consulte Consultar dados no conjunto de consultas KQL
Real-Time hub
- Real-Time hub: Real-Time hub é o único local para todos os dados em movimento em toda a organização. Cada inquilino do Microsoft Fabric é automaticamente provisionado com o hub. Para obter mais informações, consulte Visão geral do hub Real-Time.
OneLago
- Atalho: Atalhos são referências incorporadas no OneLake que apontam para outros locais de armazenamento de ficheiros. Eles fornecem uma maneira de se conectar aos dados existentes sem ter que copiá-los diretamente. Para obter mais informações, consulte atalhos do OneLake.