Usar a Análise de Texto predefinida no Fabric com a API REST e o SynapseML (versão prévia)
Importante
Esse recurso está em versão prévia.
Análise de Texto é um Serviço de IA do Azure que permite executar a mineração e a análise de texto com recursos de Processamento de Linguagem Natural (NLP).
Este tutorial demonstra como usar a análise de texto no Fabric com a API REST para:
- Detectar rótulos de sentimento no nível da frase ou do documento.
- Identificar o idioma de uma determinada entrada de texto.
- Extrair frases-chave de um texto.
- Identificar entidades diferentes no texto e categorizá-las em classes ou tipos predefinidos.
Pré-requisitos
# Get workload endpoints and access token
from synapse.ml.mlflow import get_mlflow_env_config
import json
mlflow_env_configs = get_mlflow_env_config()
access_token = access_token = mlflow_env_configs.driver_aad_token
prebuilt_AI_base_host = mlflow_env_configs.workload_endpoint + "cognitive/textanalytics/"
print("Workload endpoint for AI service: \n" + prebuilt_AI_base_host)
service_url = prebuilt_AI_base_host + "language/:analyze-text?api-version=2022-05-01"
# Make a RESful request to AI service
post_headers = {
"Content-Type" : "application/json",
"Authorization" : "Bearer {}".format(access_token)
}
def printresponse(response):
print(f"HTTP {response.status_code}")
if response.status_code == 200:
try:
result = response.json()
print(json.dumps(result, indent=2, ensure_ascii=False))
except:
print(f"pasre error {response.content}")
else:
print(response.headers)
print(f"error message: {response.content}")
Análise de sentimento
O recurso de Análise de Sentimento permite detectar os rótulos de sentimento (como "negativo", "neutro" e "positivo") e pontuações de confiança no nível da frase e do documento. Esse recurso também retorna pontuações de confiança entre 0 e 1 para cada documento e frase dentro dele para um sentimento positivo, neutro e negativo. Confira o suporte à linguagem da Análise de Sentimento e Mineração de Opiniões para ver a lista de linguagens habilitadas.
import requests
from pprint import pprint
import uuid
post_body = {
"kind": "SentimentAnalysis",
"parameters": {
"modelVersion": "latest",
"opinionMining": "True"
},
"analysisInput":{
"documents":[
{
"id":"1",
"language":"en",
"text": "The food and service were unacceptable. The concierge was nice, however."
}
]
}
}
post_headers["x-ms-workload-resource-moniker"] = str(uuid.uuid1())
response = requests.post(service_url, json=post_body, headers=post_headers)
# Output all information of the request process
printresponse(response)
Saída
HTTP 200
{
"kind": "SentimentAnalysisResults",
"results": {
"documents": [
{
"id": "1",
"sentiment": "mixed",
"confidenceScores": {
"positive": 0.43,
"neutral": 0.04,
"negative": 0.53
},
"sentences": [
{
"sentiment": "negative",
"confidenceScores": {
"positive": 0.0,
"neutral": 0.01,
"negative": 0.99
},
"offset": 0,
"length": 40,
"text": "The food and service were unacceptable. ",
"targets": [
{
"sentiment": "negative",
"confidenceScores": {
"positive": 0.01,
"negative": 0.99
},
"offset": 4,
"length": 4,
"text": "food",
"relations": [
{
"relationType": "assessment",
"ref": "#/documents/0/sentences/0/assessments/0"
}
]
},
{
"sentiment": "negative",
"confidenceScores": {
"positive": 0.01,
"negative": 0.99
},
"offset": 13,
"length": 7,
"text": "service",
"relations": [
{
"relationType": "assessment",
"ref": "#/documents/0/sentences/0/assessments/0"
}
]
}
],
"assessments": [
{
"sentiment": "negative",
"confidenceScores": {
"positive": 0.01,
"negative": 0.99
},
"offset": 26,
"length": 12,
"text": "unacceptable",
"isNegated": false
}
]
},
{
"sentiment": "positive",
"confidenceScores": {
"positive": 0.86,
"neutral": 0.08,
"negative": 0.07
},
"offset": 40,
"length": 32,
"text": "The concierge was nice, however.",
"targets": [
{
"sentiment": "positive",
"confidenceScores": {
"positive": 1.0,
"negative": 0.0
},
"offset": 44,
"length": 9,
"text": "concierge",
"relations": [
{
"relationType": "assessment",
"ref": "#/documents/0/sentences/1/assessments/0"
}
]
}
],
"assessments": [
{
"sentiment": "positive",
"confidenceScores": {
"positive": 1.0,
"negative": 0.0
},
"offset": 58,
"length": 4,
"text": "nice",
"isNegated": false
}
]
}
],
"warnings": []
}
],
"errors": [],
"modelVersion": "2022-11-01"
}
}
Detector de Idioma
O Detector de Idioma avalia o texto de entrada para cada documento e retorna os identificadores de idioma com uma pontuação que indica a intensidade da análise. Esse recurso é útil para conteúdo armazena esse texto arbitrário de coleção, onde o idioma é desconhecido. Confira Linguagens compatíveis para detecção de linguagem para ver a lista de linguagens habilitadas.
post_body = {
"kind": "LanguageDetection",
"parameters": {
"modelVersion": "latest"
},
"analysisInput":{
"documents":[
{
"id":"1",
"text": "This is a document written in English."
}
]
}
}
post_headers["x-ms-workload-resource-moniker"] = str(uuid.uuid1())
response = requests.post(service_url, json=post_body, headers=post_headers)
# Output all information of the request process
printresponse(response)
Saída
HTTP 200
{
"kind": "LanguageDetectionResults",
"results": {
"documents": [
{
"id": "1",
"detectedLanguage": {
"name": "English",
"iso6391Name": "en",
"confidenceScore": 0.99
},
"warnings": []
}
],
"errors": [],
"modelVersion": "2022-10-01"
}
}
Extrator de Frases-chave
A Extração de Frases-chave avalia o texto não estruturado e retorna uma lista de frases-chave. Esse recurso é útil se você precisar identificar rapidamente os principais pontos de estratégias em uma coleção de documentos. Confira Linguagens compatíveis para extração de frases-chave para ver a lista de linguagens habilitadas.
post_body = {
"kind": "KeyPhraseExtraction",
"parameters": {
"modelVersion": "latest"
},
"analysisInput":{
"documents":[
{
"id":"1",
"language":"en",
"text": "Dr. Smith has a very modern medical office, and she has great staff."
}
]
}
}
post_headers["x-ms-workload-resource-moniker"] = str(uuid.uuid1())
response = requests.post(service_url, json=post_body, headers=post_headers)
# Output all information of the request process
printresponse(response)
Saída
HTTP 200
{
"kind": "KeyPhraseExtractionResults",
"results": {
"documents": [
{
"id": "1",
"keyPhrases": [
"modern medical office",
"Dr. Smith",
"great staff"
],
"warnings": []
}
],
"errors": [],
"modelVersion": "2022-10-01"
}
}
NER (Reconhecimento de Entidade Nomeada)
O NER (Reconhecimento de Entidade Nomeada) é a capacidade de identificar diferentes entidades no texto e categorizá-las em classes ou tipos predefinidos, como: pessoa, local, evento, produto e organização. Confira o suporte à linguagem NER para ver a lista de linguagens habilitadas.
post_body = {
"kind": "EntityRecognition",
"parameters": {
"modelVersion": "latest"
},
"analysisInput":{
"documents":[
{
"id":"1",
"language": "en",
"text": "I had a wonderful trip to Seattle last week."
}
]
}
}
post_headers["x-ms-workload-resource-moniker"] = str(uuid.uuid1())
response = requests.post(service_url, json=post_body, headers=post_headers)
# Output all information of the request process
printresponse(response)
Saída
HTTP 200
{
"kind": "EntityRecognitionResults",
"results": {
"documents": [
{
"id": "1",
"entities": [
{
"text": "trip",
"category": "Event",
"offset": 18,
"length": 4,
"confidenceScore": 0.74
},
{
"text": "Seattle",
"category": "Location",
"subcategory": "GPE",
"offset": 26,
"length": 7,
"confidenceScore": 1.0
},
{
"text": "last week",
"category": "DateTime",
"subcategory": "DateRange",
"offset": 34,
"length": 9,
"confidenceScore": 0.8
}
],
"warnings": []
}
],
"errors": [],
"modelVersion": "2021-06-01"
}
}
Vinculação de entidade
Conteúdo relacionado
- Usar a Análise de Texto predefinida no Fabric com o SynapseML
- Usar o Tradutor de IA do Azure predefinido no Fabric com a API REST
- Usar o Tradutor de IA do Azure predefinido no Fabric com o SynapseML
- Usar o Azure OpenAI predefinido no Fabric com a API REST
- Usar o Azure OpenAI predefinido no Fabric com o SDK do Python
- Usar o Azure OpenAI predefinido no Fabric com o SynapseML