OnlineLinearTrainer<TTransformer,TModel> Classe
Definição
Importante
Algumas informações se referem a produtos de pré-lançamento que podem ser substancialmente modificados antes do lançamento. A Microsoft não oferece garantias, expressas ou implícitas, das informações aqui fornecidas.
Classe base para treinadores lineares online. Os treinadores online podem ser atualizados incrementalmente com dados adicionais.
public abstract class OnlineLinearTrainer<TTransformer,TModel> : Microsoft.ML.Trainers.TrainerEstimatorBase<TTransformer,TModel> where TTransformer : ISingleFeaturePredictionTransformer<TModel> where TModel : class
type OnlineLinearTrainer<'ransformer, 'Model (requires 'ransformer :> ISingleFeaturePredictionTransformer<'Model> and 'Model : null)> = class
inherit TrainerEstimatorBase<'ransformer, 'Model (requires 'ransformer :> ISingleFeaturePredictionTransformer<'Model> and 'Model : null)>
Public MustInherit Class OnlineLinearTrainer(Of TTransformer, TModel)
Inherits TrainerEstimatorBase(Of TTransformer, TModel)
Parâmetros de tipo
- TTransformer
- TModel
- Herança
- Derivado
Campos
FeatureColumn |
A coluna de recursos esperada pelo treinador. (Herdado de TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
A coluna de rótulo esperada pelo treinador. Pode ser |
WeightColumn |
A coluna de peso que o treinador espera. Pode ser |
Propriedades
Info |
Classe base para treinadores lineares online. Os treinadores online podem ser atualizados incrementalmente com dados adicionais. |
Métodos
Fit(IDataView, LinearModelParameters) |
Continua o treinamento de um usando um OnlineLinearTrainer<TTransformer,TModel> já treinado |
Fit(IDataView) |
Treina e retorna um ITransformer. (Herdado de TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Classe base para treinadores lineares online. Os treinadores online podem ser atualizados incrementalmente com dados adicionais. (Herdado de TrainerEstimatorBase<TTransformer,TModel>) |
Métodos de Extensão
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Acrescente um 'ponto de verificação de cache' à cadeia do avaliador. Isso garantirá que os estimadores downstream sejam treinados em relação aos dados armazenados em cache. É útil ter um ponto de verificação de cache antes dos treinadores que levam vários passes de dados. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Dado um avaliador, retorne um objeto de encapsulamento que chamará um delegado uma vez Fit(IDataView) que seja chamado. Geralmente, é importante que um avaliador retorne informações sobre o que estava em forma, e é por isso que o Fit(IDataView) método retorna um objeto especificamente tipado, em vez de apenas um geral ITransformer. No entanto, ao mesmo tempo, IEstimator<TTransformer> muitas vezes são formados em pipelines com muitos objetos, portanto, talvez seja necessário criar uma cadeia de avaliadores por meio EstimatorChain<TLastTransformer> de onde o estimador para o qual queremos obter o transformador está enterrado em algum lugar nesta cadeia. Para esse cenário, podemos por meio desse método anexar um delegado que será chamado assim que o ajuste for chamado. |