AnomalyDetectorClient.GetMultivariateModelAsync Método
Definição
Importante
Algumas informações se referem a produtos de pré-lançamento que podem ser substancialmente modificados antes do lançamento. A Microsoft não oferece garantias, expressas ou implícitas, das informações aqui fornecidas.
Sobrecargas
GetMultivariateModelAsync(String, RequestContext) |
[Método de protocolo] Obter modelo multivariado
|
GetMultivariateModelAsync(String, CancellationToken) |
Obter Modelo Multivariado. |
GetMultivariateModelAsync(String, RequestContext)
- Origem:
- AnomalyDetectorClient.cs
[Método de protocolo] Obter modelo multivariado
- Esse método de protocolo permite a criação explícita da solicitação e do processamento da resposta para cenários avançados.
- Tente a sobrecarga de conveniência mais GetMultivariateModelAsync(String, CancellationToken) simples com modelos fortemente tipado primeiro.
public virtual System.Threading.Tasks.Task<Azure.Response> GetMultivariateModelAsync (string modelId, Azure.RequestContext context);
abstract member GetMultivariateModelAsync : string * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
override this.GetMultivariateModelAsync : string * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
Public Overridable Function GetMultivariateModelAsync (modelId As String, context As RequestContext) As Task(Of Response)
Parâmetros
- modelId
- String
Identificador de modelo.
- context
- RequestContext
O contexto de solicitação, que pode substituir os comportamentos padrão do pipeline do cliente por chamada.
Retornos
A resposta retornada do serviço.
Exceções
modelId
é nulo.
modelId
é uma cadeia de caracteres vazia e era esperado que não estivesse vazio.
O serviço retornou um código de status sem êxito.
Exemplos
Este exemplo mostra como chamar GetMultivariateModelAsync com os parâmetros necessários e analisar o resultado.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
Response response = await client.GetMultivariateModelAsync("<modelId>", new RequestContext());
JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("modelId").ToString());
Console.WriteLine(result.GetProperty("createdTime").ToString());
Console.WriteLine(result.GetProperty("lastUpdatedTime").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("dataSource").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("dataSchema").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("startTime").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("endTime").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("displayName").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("slidingWindow").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("alignPolicy").GetProperty("alignMode").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("alignPolicy").GetProperty("fillNAMethod").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("alignPolicy").GetProperty("paddingValue").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("status").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("errors")[0].GetProperty("code").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("errors")[0].GetProperty("message").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("modelState").GetProperty("epochIds")[0].ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("modelState").GetProperty("trainLosses")[0].ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("modelState").GetProperty("validationLosses")[0].ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("modelState").GetProperty("latenciesInSeconds")[0].ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("variableStates")[0].GetProperty("variable").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("variableStates")[0].GetProperty("filledNARatio").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("variableStates")[0].GetProperty("effectiveCount").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("variableStates")[0].GetProperty("firstTimestamp").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("variableStates")[0].GetProperty("lastTimestamp").ToString());
Comentários
Obter informações detalhadas do modelo multivariável, incluindo o status de treinamento e as variáveis usadas no modelo.
Abaixo está o esquema JSON para o conteúdo de resposta.
Corpo da resposta:
Esquema para AnomalyDetectionModel
:
{
modelId: string, # Required.
createdTime: string (date & time), # Required.
lastUpdatedTime: string (date & time), # Required.
modelInfo: {
dataSource: string, # Required.
dataSchema: "OneTable" | "MultiTable", # Optional.
startTime: string (date & time), # Required.
endTime: string (date & time), # Required.
displayName: string, # Optional.
slidingWindow: number, # Optional.
alignPolicy: {
alignMode: "Inner" | "Outer", # Optional.
fillNAMethod: "Previous" | "Subsequent" | "Linear" | "Zero" | "Fixed", # Optional.
paddingValue: number, # Optional.
}, # Optional.
status: "CREATED" | "RUNNING" | "READY" | "FAILED", # Optional.
errors: [
{
code: string, # Required.
message: string, # Required.
}
], # Optional.
diagnosticsInfo: {
modelState: {
epochIds: [number], # Optional.
trainLosses: [number], # Optional.
validationLosses: [number], # Optional.
latenciesInSeconds: [number], # Optional.
}, # Optional.
variableStates: [VariableState], # Optional.
}, # Optional.
}, # Optional.
}
Aplica-se a
GetMultivariateModelAsync(String, CancellationToken)
- Origem:
- AnomalyDetectorClient.cs
Obter Modelo Multivariado.
public virtual System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.AnomalyDetectionModel>> GetMultivariateModelAsync (string modelId, System.Threading.CancellationToken cancellationToken = default);
abstract member GetMultivariateModelAsync : string * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.AnomalyDetectionModel>>
override this.GetMultivariateModelAsync : string * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.AnomalyDetectionModel>>
Public Overridable Function GetMultivariateModelAsync (modelId As String, Optional cancellationToken As CancellationToken = Nothing) As Task(Of Response(Of AnomalyDetectionModel))
Parâmetros
- modelId
- String
Identificador de modelo.
- cancellationToken
- CancellationToken
O token de cancelamento a ser usado.
Retornos
Exceções
modelId
é nulo.
modelId
é uma cadeia de caracteres vazia e era esperado que não estivesse vazio.
Exemplos
Este exemplo mostra como chamar GetMultivariateModelAsync com os parâmetros necessários.
var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);
var result = await client.GetMultivariateModelAsync("<modelId>");
Comentários
Obtenha informações detalhadas sobre o modelo multivariado, incluindo as status de treinamento e as variáveis usadas no modelo.
Aplica-se a
Azure SDK for .NET