Compartilhar via


Databricks Runtime 12.1 para Machine Learning (EoS)

Observação

O suporte para esta versão do Databricks Runtime foi encerrado. Para obter a data de fim do suporte, consulte o Histórico de fim do suporte. Para todas as versões compatíveis do Databricks Runtime, consulte Versões e compatibilidade de notas sobre a versão do Databricks Runtime.

O Databricks Runtime 12.1 para Machine Learning fornece um ambiente pronto para uso em aprendizado de máquina e ciência de dados baseado no Databricks Runtime 12.1 (EoS). O Databricks Runtime ML contém muitas bibliotecas de aprendizado de máquina populares, inclusive TensorFlow, PyTorch e XGBoost. O Databricks Runtime ML inclui o AutoML, uma ferramenta para treinamento automático de pipelines de aprendizado de máquina. O Databricks Runtime ML também oferece suporte ao treinamento de aprendizado profundo distribuído com o uso do Horovod.

Para obter mais informações, incluindo instruções para criar um cluster de ML do Databricks Runtime, confira IA e Machine Learning no Databricks.

Novos recursos e aprimoramentos

O Databricks Runtime 12.1 ML foi desenvolvido com base no Databricks Runtime 12.1. Para obter informações sobre as novidades do Databricks Runtime 12.1, incluindo o MLlib e SparkR do Apache Spark, confira as notas sobre a versão do Databricks Runtime 12.1 (EoS).

AutoML

A partir do Databricks Runtime 12.1 ML, a API AutoML do Python permite que você especifique um nome personalizado para o experimento gerado pelo AutoML. Use o parâmetro experiment_name.

Para obter mais informações sobre o AutoML, consulte O que é o AutoML?.

Ambiente do sistema

O ambiente do sistema no Databricks Runtime 12.1 ML é diferente do Databricks Runtime 12.1 nestes aspectos:

O Databricks Runtime 12.1 ML inclui o XGBoost 1.7.2, que não tem suporte para clusters de GPU com capacidade de computação 5.2 e inferior.

Bibliotecas

As seções a seguir listam as bibliotecas incluídas no Databricks Runtime 12.1 ML que são diferentes daquelas incluídas no Databricks Runtime 12.1.

Nesta seção:

Bibliotecas de camada superior

O Databricks Runtime 12.1 ML inclui as seguintes bibliotecas de camada superior:

Bibliotecas do Python

O Databricks Runtime 12.1 ML usa o Virtualenv para gerenciamento de pacotes do Python e inclui muitos pacotes de ML bastante populares.

Além dos pacotes especificados nas seções a seguir, o Databricks Runtime 12.1 ML também inclui os seguintes pacotes:

  • hyperopt 0.2.7.db1
  • sparkdl 2.3.0-db3
  • automl 1.15.0

Para reproduzir o ambiente do Python do Databricks Runtime ML no ambiente virtual do Python local, baixe o arquivo requirements-12.1.txt e execute pip install -r requirements-12.1.txt. Esse comando instala todas as bibliotecas código aberto que o Databricks Runtime ML usa, mas não instala bibliotecas desenvolvidas pelo Databricks, como databricks-automl, databricks-feature-store, ou o fork do Databricks de hyperopt.

Bibliotecas do Python em clusters de CPU

Biblioteca Versão Biblioteca Versão Biblioteca Versão
absl-py 1.0.0 argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0
astor 0.8.1 asttokens 2.0.5 astunparse 1.6.3
attrs 21.4.0 azure-core 1.26.1 azure-cosmos 4.2.0
backcall 0.2.0 backports.entry-points-selectable 1.2.0 bcrypt 3.2.0
beautifulsoup4 4.11.1 black 22.3.0 bleach 4.1.0
blis 0.7.9 boto3 1.21.32 botocore 1.24.32
cachetools 4.2.2 catalogue 2.0.8 category-encoders 2.5.1.post0
certifi 2021.10.8 cffi 1.15.0 chardet 4.0.0
charset-normalizer 2.0.4 clique 8.0.4 cloudpickle 2.0.0
cmdstanpy 1.0.8 confecção 0.0.3 configparser 5.2.0
convertdate 2.4.0 criptografia 3.4.8 cycler 0.11.0
cymem 2.0.7 Cython 0.29.28 databricks-automl-runtime 0.2.14
databricks-cli 0.17.4 databricks-feature-store 0.9.0 dbl-tempo 0.1.12
dbus-python 1.2.16 debugpy 1.5.1 decorator 5.1.1
defusedxml 0.7.1 dill 0.3.4 diskcache 5.4.0
distlib 0.3.6 docstring-to-markdown 0,11 entrypoints 0,4
ephem 4.1.4 em execução 0.8.3 facets-overview 1.0.0
fastjsonschema 2.16.2 fasttext 0.9.2 filelock 3.6.0
Flask 1.1.2 flatbuffers 22.12.6 fonttools 4.25.0
fsspec 2022.2.0 future 0.18.2 gast 0.4.0
gitdb 4.0.10 GitPython 3.1.27 google-auth 1.33.0
google-auth-oauthlib 0.4.6 google-pasta 0.2.0 grpcio 1.42.0
gunicorn 20.1.0 gviz-api 1.10.0 h5py 3.6.0
hijri-converter 2.2.4 feriados 0.17.2 horovod 0.26.1
htmlmin 0.1.12 huggingface-hub 0.11.1 idna 3.3
ImageHash 4.3.1 imbalanced-learn 0.8.1 importlib-metadata 4.11.3
ipykernel 6.15.3 ipython 8.5.0 ipython-genutils 0.2.0
ipywidgets 7.7.2 isodate 0.6.1 itsdangerous 2.0.1
jedi 0.18.1 Jinja2 2.11.3 jmespath 0.10.0
joblib 1.1.0 joblibspark 0.5.0 jsonschema 4.4.0
jupyter-client 6.1.12 jupyter_core 4.11.2 jupyterlab-pygments 0.1.2
jupyterlab-widgets 1.0.0 keras 2.10.0 Keras-Preprocessing 1.1.2
kiwisolver 1.3.2 korean-lunar-calendar 0.3.1 langcodes 3.3.0
libclang 14.0.6 lightgbm 3.3.3 llvmlite 0.38.0
LunarCalendar 0.0.9 Mako 1.2.0 Markdown 3.3.4
MarkupSafe 2.0.1 matplotlib 3.5.1 matplotlib-inline 0.1.2
mccabe 0.7.0 mistune 0.8.4 mleap 0.20.0
mlflow-skinny 2.1.1 multimethod 1.9.1 murmurhash 1.0.9
mypy-extensions 0.4.3 nbclient 0.5.13 nbconvert 6.4.4
nbformat 5.3.0 nest-asyncio 1.5.5 networkx 2.7.1
nltk 3.7 nodeenv 1.7.0 notebook 6.4.8
numba 0.55.1 numpy 1.21.5 oauthlib 3.2.0
opt-einsum 3.3.0 empacotando 21.3 pandas 1.4.2
pandas-profiling 3.5.0 pandocfilters 1.5.0 paramiko 2.9.2
parso 0.8.3 pathspec 0.9.0 pathy 0.6.1
patsy 0.5.2 petastorm 0.12.0 pexpect 4.8.0
phik 0.12.3 pickleshare 0.7.5 Pillow 9.0.1
pip 21.2.4 platformdirs 2.6.0 plotly 5.6.0
pluggy 1.0.0 pmdarima 2.0.2 preshed 3.0.8
prometheus-client 0.13.1 prompt-toolkit 3.0.20 prophet 1.1.1
protobuf 3.19.4 psutil 5.8.0 psycopg2 2.9.3
ptyprocess 0.7.0 pure-eval 0.2.2 pyarrow 7.0.0
pyasn1 0.4.8 pyasn1-modules 0.2.8 pybind11 2.10.1
pycparser 2.21 pydantic 1.10.2 pyflakes 2.5.0
Pygments 2.11.2 PyGObject 3.36.0 PyJWT 2.6.0
PyMeeus 0.5.12 PyNaCl 1.5.0 pyodbc 4.0.32
pyparsing 3.0.4 pyright 1.1.283 pyrsistent 0.18.0
python-dateutil 2.8.2 python-editor 1.0.4 python-lsp-jsonrpc 1.0.0
python-lsp-server 1.6.0 pytz 2021.3 PyWavelets 1.3.0
PyYAML 6,0 pyzmq 22.3.0 regex 2022.3.15
solicitações 2.27.1 requests-oauthlib 1.3.1 requests-unixsocket 0.2.0
rope 0.22.0 rsa 4.7.2 s3transfer 0.5.0
scikit-learn 1.0.2 scipy 1.7.3 seaborn 0.11.2
Send2Trash 1.8.0 setuptools 61.2.0 setuptools-git 1,2
shap 0.41.0 simplejson 3.17.6 six 1.16.0
slicer 0.0.7 smart-open 5.1.0 smmap 5.0.0
soupsieve 2.3.1 spacy 3.4.3 spacy-legacy 3.0.10
spacy-loggers 1.0.4 spark-tensorflow-distributor 1.0.0 sqlparse 0.4.2
srsly 2.4.5 ssh-import-id 5.10 stack-data 0.2.0
statsmodels 0.13.2 tabulate 0.8.9 tangled-up-in-unicode 0.2.0
tenacity 8.0.1 tensorboard 2.10.0 tensorboard-data-server 0.6.1
tensorboard-plugin-profile 2.8.0 tensorboard-plugin-wit 1.8.1 tensorflow-cpu 2.10.0
tensorflow-estimator 2.10.0 tensorflow-io-gcs-filesystem 0.29.0 termcolor 2.1.1
terminado 0.13.1 testpath 0.5.0 thinc 8.1.6
threadpoolctl 2.2.0 tokenize-rt 4.2.1 criadores de token 0.13.2
tomli 1.2.2 torch 1.13.0+cpu torchvision 0.14.0+cpu
tornado 6.1 tqdm 4.64.0 traitlets 5.1.1
transformers 4.25.1 typeguard 2.13.3 typer 0.7.0
typing_extensions 4.1.1 ujson 5.1.0 unattended-upgrades 0,1
urllib3 1.26.9 virtualenv 20.8.0 visions 0.7.5
wasabi 0.10.1 wcwidth 0.2.5 webencodings 0.5.1
websocket-client 0.58.0 Werkzeug 2.0.3 whatthepatch 1.0.3
wheel 0.37.1 widgetsnbextension 3.6.1 wrapt 1.12.1
xgboost 1.7.2 yapf 0.31.0 zipp 3.7.0

Bibliotecas do Python em clusters de GPU

Biblioteca Versão Biblioteca Versão Biblioteca Versão
absl-py 1.0.0 argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0
astor 0.8.1 asttokens 2.0.5 astunparse 1.6.3
attrs 21.4.0 azure-core 1.26.1 azure-cosmos 4.2.0
backcall 0.2.0 backports.entry-points-selectable 1.2.0 bcrypt 3.2.0
beautifulsoup4 4.11.1 black 22.3.0 bleach 4.1.0
blis 0.7.9 boto3 1.21.32 botocore 1.24.32
cachetools 4.2.2 catalogue 2.0.8 category-encoders 2.5.1.post0
certifi 2021.10.8 cffi 1.15.0 chardet 4.0.0
charset-normalizer 2.0.4 clique 8.0.4 cloudpickle 2.0.0
cmdstanpy 1.0.8 confecção 0.0.3 configparser 5.2.0
convertdate 2.4.0 criptografia 3.4.8 cycler 0.11.0
cymem 2.0.7 Cython 0.29.28 databricks-automl-runtime 0.2.14
databricks-cli 0.17.4 databricks-feature-store 0.9.0 dbl-tempo 0.1.12
dbus-python 1.2.16 debugpy 1.5.1 decorator 5.1.1
defusedxml 0.7.1 dill 0.3.4 diskcache 5.4.0
distlib 0.3.6 docstring-to-markdown 0,11 entrypoints 0,4
ephem 4.1.4 em execução 0.8.3 facets-overview 1.0.0
fastjsonschema 2.16.2 fasttext 0.9.2 filelock 3.6.0
Flask 1.1.2 flatbuffers 22.12.6 fonttools 4.25.0
fsspec 2022.2.0 future 0.18.2 gast 0.4.0
gitdb 4.0.10 GitPython 3.1.27 google-auth 1.33.0
google-auth-oauthlib 0.4.6 google-pasta 0.2.0 grpcio 1.42.0
gunicorn 20.1.0 gviz-api 1.10.0 h5py 3.6.0
hijri-converter 2.2.4 feriados 0.17.2 horovod 0.26.1
htmlmin 0.1.12 huggingface-hub 0.11.1 idna 3.3
ImageHash 4.3.1 imbalanced-learn 0.8.1 importlib-metadata 4.11.3
ipykernel 6.15.3 ipython 8.5.0 ipython-genutils 0.2.0
ipywidgets 7.7.2 isodate 0.6.1 itsdangerous 2.0.1
jedi 0.18.1 Jinja2 2.11.3 jmespath 0.10.0
joblib 1.1.0 joblibspark 0.5.0 jsonschema 4.4.0
jupyter-client 6.1.12 jupyter_core 4.11.2 jupyterlab-pygments 0.1.2
jupyterlab-widgets 1.0.0 keras 2.10.0 Keras-Preprocessing 1.1.2
kiwisolver 1.3.2 korean-lunar-calendar 0.3.1 langcodes 3.3.0
libclang 14.0.6 lightgbm 3.3.3 llvmlite 0.38.0
LunarCalendar 0.0.9 Mako 1.2.0 Markdown 3.3.4
MarkupSafe 2.0.1 matplotlib 3.5.1 matplotlib-inline 0.1.2
mccabe 0.7.0 mistune 0.8.4 mleap 0.20.0
mlflow-skinny 2.1.1 multimethod 1.9.1 murmurhash 1.0.9
mypy-extensions 0.4.3 nbclient 0.5.13 nbconvert 6.4.4
nbformat 5.3.0 nest-asyncio 1.5.5 networkx 2.7.1
nltk 3.7 nodeenv 1.7.0 notebook 6.4.8
numba 0.55.1 numpy 1.21.5 oauthlib 3.2.0
opt-einsum 3.3.0 empacotando 21.3 pandas 1.4.2
pandas-profiling 3.5.0 pandocfilters 1.5.0 paramiko 2.9.2
parso 0.8.3 pathspec 0.9.0 pathy 0.6.1
patsy 0.5.2 petastorm 0.12.0 pexpect 4.8.0
phik 0.12.3 pickleshare 0.7.5 Pillow 9.0.1
pip 21.2.4 platformdirs 2.6.0 plotly 5.6.0
pluggy 1.0.0 pmdarima 2.0.2 preshed 3.0.8
prompt-toolkit 3.0.20 prophet 1.1.1 protobuf 3.19.4
psutil 5.8.0 psycopg2 2.9.3 ptyprocess 0.7.0
pure-eval 0.2.2 pyarrow 7.0.0 pyasn1 0.4.8
pyasn1-modules 0.2.8 pybind11 2.10.1 pycparser 2.21
pydantic 1.10.2 pyflakes 2.5.0 Pygments 2.11.2
PyGObject 3.36.0 PyJWT 2.6.0 PyMeeus 0.5.12
PyNaCl 1.5.0 pyodbc 4.0.32 pyparsing 3.0.4
pyright 1.1.283 pyrsistent 0.18.0 python-dateutil 2.8.2
python-editor 1.0.4 python-lsp-jsonrpc 1.0.0 python-lsp-server 1.6.0
pytz 2021.3 PyWavelets 1.3.0 PyYAML 6,0
pyzmq 22.3.0 regex 2022.3.15 solicitações 2.27.1
requests-oauthlib 1.3.1 requests-unixsocket 0.2.0 rope 0.22.0
rsa 4.7.2 s3transfer 0.5.0 scikit-learn 1.0.2
scipy 1.7.3 seaborn 0.11.2 Send2Trash 1.8.0
setuptools 61.2.0 setuptools-git 1,2 shap 0.41.0
simplejson 3.17.6 six 1.16.0 slicer 0.0.7
smart-open 5.1.0 smmap 5.0.0 soupsieve 2.3.1
spacy 3.4.3 spacy-legacy 3.0.10 spacy-loggers 1.0.4
spark-tensorflow-distributor 1.0.0 sqlparse 0.4.2 srsly 2.4.5
ssh-import-id 5.10 stack-data 0.2.0 statsmodels 0.13.2
tabulate 0.8.9 tangled-up-in-unicode 0.2.0 tenacity 8.0.1
tensorboard 2.10.0 tensorboard-data-server 0.6.1 tensorboard-plugin-profile 2.8.0
tensorboard-plugin-wit 1.8.1 tensorflow 2.10.0 tensorflow-estimator 2.10.0
tensorflow-io-gcs-filesystem 0.29.0 termcolor 2.1.1 terminado 0.13.1
testpath 0.5.0 thinc 8.1.6 threadpoolctl 2.2.0
tokenize-rt 4.2.1 criadores de token 0.13.2 tomli 1.2.2
torch 1.13.0+cu117 torchvision 0.14.0+cu117 tornado 6.1
tqdm 4.64.0 traitlets 5.1.1 transformers 4.25.1
typeguard 2.13.3 typer 0.7.0 typing_extensions 4.1.1
ujson 5.1.0 unattended-upgrades 0,1 urllib3 1.26.9
virtualenv 20.8.0 visions 0.7.5 wasabi 0.10.1
wcwidth 0.2.5 webencodings 0.5.1 websocket-client 0.58.0
Werkzeug 2.0.3 whatthepatch 1.0.3 wheel 0.37.1
widgetsnbextension 3.6.1 wrapt 1.12.1 xgboost 1.7.2
yapf 0.31.0 zipp 3.7.0

Bibliotecas do R

As bibliotecas do R são idênticas às Bibliotecas do R do Databricks Runtime 12.1.

Bibliotecas do Java e do Scala (cluster do Scala 2.12)

Além das bibliotecas do Java e do Scala no Databricks Runtime 12.1, o Databricks Runtime 12.1 ML contém os seguintes JARs:

Clusters de CPU

ID do Grupo Artifact ID Versão
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 v0.20.0-db1
ml.dmlc xgboost4j-spark_2.12 1.6.2
ml.dmlc xgboost4j_2.12 1.6.2
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 2.0.1
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

Clusters de GPU

ID do Grupo Artifact ID Versão
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 v0.20.0-db1
ml.dmlc xgboost4j-gpu_2.12 1.6.2
ml.dmlc xgboost4j-spark-gpu_2.12 1.6.2
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 2.0.1
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0