Compartilhar via


Databricks Runtime 11.0 para Machine Learning (EoS)

Observação

O suporte para esta versão do Databricks Runtime foi encerrado. Para obter a data de fim do suporte, consulte o Histórico de fim do suporte. Para todas as versões compatíveis do Databricks Runtime, consulte Versões e compatibilidade de notas sobre a versão do Databricks Runtime.

O Databricks Runtime 11.0 para Machine Learning fornece um ambiente pronto para uso em machine learning e ciência de dados com base no Databricks Runtime 11.0 (EoS). O Databricks Runtime ML contém muitas bibliotecas de aprendizado de máquina populares, inclusive TensorFlow, PyTorch e XGBoost. O Databricks Runtime ML inclui o AutoML, uma ferramenta para treinamento automático de pipelines de aprendizado de máquina. O Databricks Runtime ML também oferece suporte ao treinamento de aprendizado profundo distribuído com o uso do Horovod.

Para obter mais informações, incluindo instruções para criar um cluster de ML do Databricks Runtime, confira IA e Machine Learning no Databricks.

Novos recursos e aprimoramentos

O Databricks Runtime 11.0 ML foi desenvolvido com base no Databricks Runtime 11.0. Para obter informações sobre as novidades do Databricks Runtime 11.0, inclusive o Apache Spark MLlib e o SparkR, confira as notas sobre a versão do Databricks Runtime 11.0 (EoS).

Aprimoramentos no AutoML

O AutoML agora oferece suporte a frações de amostragem mais altas para melhor desempenho em grandes conjuntos de dados. Para obter detalhes, confira Amostragem de conjuntos grandes de dados.

Ambiente do sistema

O ambiente do sistema no Databricks Runtime 11.0 ML é diferente do Databricks Runtime 11.0 nestes aspectos:

Bibliotecas

As seções a seguir listam as bibliotecas incluídas no Databricks Runtime 11.0 ML que são diferentes daquelas incluídas no Databricks Runtime 11.0.

Nesta seção:

Bibliotecas de camada superior

O Databricks Runtime 11.0 ML inclui as seguintes bibliotecas de camada superior:

Bibliotecas do Python

O Databricks Runtime 11.0 ML usa o Virtualenv para gerenciamento de pacotes do Python e inclui muitos pacotes de ML bastante populares.

Além dos pacotes especificados nas seções a seguir, o Databricks Runtime 11.0 ML também inclui os seguintes pacotes:

  • hyperopt 0.2.7.db1
  • sparkdl 2.2.0-db6
  • feature_store 0.4.1
  • automl 1.10

Bibliotecas do Python em clusters de CPU

Biblioteca Versão Biblioteca Versão Biblioteca Versão
absl-py 1.0.0 Antergos Linux 2015.10 (atualização cumulativa de ISO) argon2-cffi 20.1.0
astor 0.8.1 astunparse 1.6.3 async-generator 1,10
attrs 21.2.0 backcall 0.2.0 backports.entry-points-selectable 1.1.1
bcrypt 3.2.2 bleach 4.0.0 blis 0.7.7
boto3 1.21.18 botocore 1.24.18 cachetools 5.1.0
catalogue 2.0.7 certifi 2021.10.8 cffi 1.14.6
chardet 4.0.0 charset-normalizer 2.0.4 clique 8.0.3
cloudpickle 2.0.0 cmdstanpy 0.9.68 configparser 5.2.0
convertdate 2.4.0 criptografia 3.4.8 cycler 0.10.0
cymem 2.0.6 Cython 0.29.24 databricks-automl-runtime 0.2.8
databricks-cli 0.16.4 dbl-tempo 0.1.12 dbus-python 1.2.16
debugpy 1.4.1 decorator 5.1.0 defusedxml 0.7.1
dill 0.3.4 diskcache 5.4.0 distlib 0.3.4
distro-info 0.23ubuntu1 entrypoints 0.3 ephem 4.1.3
facets-overview 1.0.0 fasttext 0.9.2 filelock 3.3.1
Flask 1.1.2 flatbuffers 2,0 fsspec 2021.8.1
future 0.18.2 gast 0.5.3 gitdb 4.0.9
GitPython 3.1.27 google-auth 2.6.0 google-auth-oauthlib 0.4.6
google-pasta 0.2.0 grpcio 1.44.0 gunicorn 20.1.0
gviz-api 1.10.0 h5py 3.3.0 hijri-converter 2.2.3
holidays 0.13 horovod 0.24.3 htmlmin 0.1.12
huggingface-hub 0.6.0 idna 3.2 ImageHash 4.2.1
imbalanced-learn 0.8.1 importlib-metadata 4.8.1 ipykernel 6.12.1
ipython 7.32.0 ipython-genutils 0.2.0 ipywidgets 7.7.0
isodate 0.6.1 itsdangerous 2.0.1 jedi 0.18.0
Jinja2 2.11.3 jmespath 0.10.0 joblib 1.0.1
joblibspark 0.5.0 jsonschema 3.2.0 jupyter-client 6.1.12
jupyter-core 4.8.1 jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0
keras 2.8.0 Keras-Preprocessing 1.1.2 kiwisolver 1.3.1
korean-lunar-calendar 0.2.1 langcodes 3.3.0 libclang 14.0.1
lightgbm 3.3.2 llvmlite 0.38.0 LunarCalendar 0.0.9
Mako 1.2.0 Markdown 3.3.6 MarkupSafe 2.0.1
matplotlib 3.4.3 matplotlib-inline 0.1.2 missingno 0.5.1
mistune 0.8.4 mleap 0.20.0 mlflow-skinny 1.26.0
multimethod 1.8 murmurhash 1.0.7 nbclient 0.5.3
nbconvert 6.1.0 nbformat 5.1.3 nest-asyncio 1.5.1
networkx 2.6.3 nltk 3.6.5 notebook 6.4.5
numba 0.55.1 numpy 1.20.3 oauthlib 3.2.0
opt-einsum 3.3.0 empacotando 21.0 pandas 1.3.4
pandas-profiling 3.1.0 pandocfilters 1.4.3 paramiko 2.9.2
parso 0.8.2 pathy 0.6.1 patsy 0.5.2
petastorm 0.11.4 pexpect 4.8.0 phik 0.12.2
pickleshare 0.7.5 Pillow 8.4.0 pip 21.2.4
platformdirs 2.5.2 plotly 5.6.0 pmdarima 1.8.5
preshed 3.0.6 prometheus-client 0.11.0 prompt-toolkit 3.0.20
prophet 1.0.1 protobuf 3.19.4 psutil 5.8.0
psycopg2 2.9.3 ptyprocess 0.7.0 pyarrow 7.0.0
pyasn1 0.4.8 pyasn1-modules 0.2.8 pybind11 2.9.2
pycparser 2,20 pydantic 1.8.2 Pygments 2.10.0
PyGObject 3.36.0 PyMeeus 0.5.11 PyNaCl 1.5.0
pyodbc 4.0.31 pyparsing 3.0.4 pyrsistent 0.18.0
pystan 2.19.1.1 python-apt 2.0.0+ubuntu0.20.4.7 python-dateutil 2.8.2
python-editor 1.0.4 pytz 2021.3 PyWavelets 1.1.1
PyYAML 6,0 pyzmq 22.2.1 regex 2021.8.3
solicitações 2.26.0 requests-oauthlib 1.3.1 requests-unixsocket 0.2.0
rsa 4.8 s3transfer 0.5.2 sacremoses 0.0.53
scikit-learn 0.24.2 scipy 1.7.1 seaborn 0.11.2
Send2Trash 1.8.0 setuptools 58.0.4 setuptools-git 1,2
shap 0.40.0 simplejson 3.17.6 six 1.16.0
slicer 0.0.7 smart-open 5.2.1 smmap 5.0.0
spacy 3.2.3 spacy-legacy 3.0.9 spacy-loggers 1.0.2
spark-tensorflow-distributor 1.0.0 sqlparse 0.4.2 srsly 2.4.3
ssh-import-id 5.10 statsmodels 0.12.2 tabulate 0.8.9
tangled-up-in-unicode 0.1.0 tenacity 8.0.1 tensorboard 2.8.0
tensorboard-data-server 0.6.1 tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.1
tensorflow-cpu 2.8.0 tensorflow-estimator 2.8.0 tensorflow-io-gcs-filesystem 0.25.0
termcolor 1.1.0 terminado 0.9.4 testpath 0.5.0
tf-estimator-nightly 2.8.0.dev2021122109 thinc 8.0.15 threadpoolctl 2.2.0
criadores de token 0.12.1 torch 1.11.0+cpu torchvision 0.12.0+cpu
tornado 6.1 tqdm 4.62.3 traitlets 5.1.0
transformers 4.17.0 typer 0.4.1 typing-extensions 3.10.0.2
ujson 4.0.2 unattended-upgrades 0,1 urllib3 1.26.7
virtualenv 20.8.0 visions 0.7.4 wasabi 0.9.1
wcwidth 0.2.5 webencodings 0.5.1 websocket-client 1.3.1
Werkzeug 2.0.2 wheel 0.37.0 widgetsnbextension 3.6.0
wrapt 1.12.1 xgboost 1.5.2 zipp 3.6.0

Bibliotecas do Python em clusters de GPU

Biblioteca Versão Biblioteca Versão Biblioteca Versão
absl-py 1.0.0 Antergos Linux 2015.10 (atualização cumulativa de ISO) argon2-cffi 20.1.0
astor 0.8.1 astunparse 1.6.3 async-generator 1,10
attrs 21.2.0 backcall 0.2.0 backports.entry-points-selectable 1.1.1
bcrypt 3.2.2 bleach 4.0.0 blis 0.7.7
boto3 1.21.18 botocore 1.24.18 cachetools 5.1.0
catalogue 2.0.7 certifi 2021.10.8 cffi 1.14.6
chardet 4.0.0 charset-normalizer 2.0.4 clique 8.0.3
cloudpickle 2.0.0 cmdstanpy 0.9.68 configparser 5.2.0
convertdate 2.4.0 criptografia 3.4.8 cycler 0.10.0
cymem 2.0.6 Cython 0.29.24 databricks-automl-runtime 0.2.8
databricks-cli 0.16.4 dbl-tempo 0.1.12 dbus-python 1.2.16
debugpy 1.4.1 decorator 5.1.0 defusedxml 0.7.1
dill 0.3.4 diskcache 5.4.0 distlib 0.3.4
distro-info 0.23ubuntu1 entrypoints 0.3 ephem 4.1.3
facets-overview 1.0.0 fasttext 0.9.2 filelock 3.3.1
Flask 1.1.2 flatbuffers 2,0 fsspec 2021.8.1
future 0.18.2 gast 0.5.3 gitdb 4.0.9
GitPython 3.1.27 google-auth 2.6.0 google-auth-oauthlib 0.4.6
google-pasta 0.2.0 grpcio 1.44.0 gunicorn 20.1.0
gviz-api 1.10.0 h5py 3.3.0 hijri-converter 2.2.3
holidays 0.13 horovod 0.24.3 htmlmin 0.1.12
huggingface-hub 0.6.0 idna 3.2 ImageHash 4.2.1
imbalanced-learn 0.8.1 importlib-metadata 4.8.1 ipykernel 6.12.1
ipython 7.32.0 ipython-genutils 0.2.0 ipywidgets 7.7.0
isodate 0.6.1 itsdangerous 2.0.1 jedi 0.18.0
Jinja2 2.11.3 jmespath 0.10.0 joblib 1.0.1
joblibspark 0.5.0 jsonschema 3.2.0 jupyter-client 6.1.12
jupyter-core 4.8.1 jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0
keras 2.8.0 Keras-Preprocessing 1.1.2 kiwisolver 1.3.1
korean-lunar-calendar 0.2.1 langcodes 3.3.0 libclang 14.0.1
lightgbm 3.3.2 llvmlite 0.38.0 LunarCalendar 0.0.9
Mako 1.2.0 Markdown 3.3.6 MarkupSafe 2.0.1
matplotlib 3.4.3 matplotlib-inline 0.1.2 missingno 0.5.1
mistune 0.8.4 mleap 0.20.0 mlflow-skinny 1.26.0
multimethod 1.8 murmurhash 1.0.7 nbclient 0.5.3
nbconvert 6.1.0 nbformat 5.1.3 nest-asyncio 1.5.1
networkx 2.6.3 nltk 3.6.5 notebook 6.4.5
numba 0.55.1 numpy 1.20.3 oauthlib 3.2.0
opt-einsum 3.3.0 empacotando 21.0 pandas 1.3.4
pandas-profiling 3.1.0 pandocfilters 1.4.3 paramiko 2.9.2
parso 0.8.2 pathy 0.6.1 patsy 0.5.2
petastorm 0.11.4 pexpect 4.8.0 phik 0.12.2
pickleshare 0.7.5 Pillow 8.4.0 pip 21.2.4
platformdirs 2.5.2 plotly 5.6.0 pmdarima 1.8.5
preshed 3.0.6 prompt-toolkit 3.0.20 prophet 1.0.1
protobuf 3.19.4 psutil 5.8.0 psycopg2 2.9.3
ptyprocess 0.7.0 pyarrow 7.0.0 pyasn1 0.4.8
pyasn1-modules 0.2.8 pybind11 2.9.2 pycparser 2,20
pydantic 1.8.2 Pygments 2.10.0 PyGObject 3.36.0
PyMeeus 0.5.11 PyNaCl 1.5.0 pyodbc 4.0.31
pyparsing 3.0.4 pyrsistent 0.18.0 pystan 2.19.1.1
python-apt 2.0.0+ubuntu0.20.4.7 python-dateutil 2.8.2 python-editor 1.0.4
pytz 2021.3 PyWavelets 1.1.1 PyYAML 6,0
pyzmq 22.2.1 regex 2021.8.3 solicitações 2.26.0
requests-oauthlib 1.3.1 requests-unixsocket 0.2.0 rsa 4.8
s3transfer 0.5.2 sacremoses 0.0.53 scikit-learn 0.24.2
scipy 1.7.1 seaborn 0.11.2 Send2Trash 1.8.0
setuptools 58.0.4 setuptools-git 1,2 shap 0.40.0
simplejson 3.17.6 six 1.16.0 slicer 0.0.7
smart-open 5.2.1 smmap 5.0.0 spacy 3.2.3
spacy-legacy 3.0.9 spacy-loggers 1.0.2 spark-tensorflow-distributor 1.0.0
sqlparse 0.4.2 srsly 2.4.3 ssh-import-id 5.10
statsmodels 0.12.2 tabulate 0.8.9 tangled-up-in-unicode 0.1.0
tenacity 8.0.1 tensorboard 2.8.0 tensorboard-data-server 0.6.1
tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.1 tensorflow 2.8.0
tensorflow-estimator 2.8.0 tensorflow-io-gcs-filesystem 0.25.0 termcolor 1.1.0
terminado 0.9.4 testpath 0.5.0 tf-estimator-nightly 2.8.0.dev2021122109
thinc 8.0.15 threadpoolctl 2.2.0 criadores de token 0.12.1
torch 1.11.0+cu113 torchvision 0.12.0+cu113 tornado 6.1
tqdm 4.62.3 traitlets 5.1.0 transformers 4.17.0
typer 0.4.1 typing-extensions 3.10.0.2 ujson 4.0.2
unattended-upgrades 0,1 urllib3 1.26.7 virtualenv 20.8.0
visions 0.7.4 wasabi 0.9.1 wcwidth 0.2.5
webencodings 0.5.1 websocket-client 1.3.1 Werkzeug 2.0.2
wheel 0.37.0 widgetsnbextension 3.6.0 wrapt 1.12.1
xgboost 1.5.2 zipp 3.6.0

Pacotes do Spark que contêm módulos do Python

Pacote do Spark Módulo do Python Versão
graphframes graphframes 0.8.2-db1-spark3.2

Bibliotecas do R

As bibliotecas do R são idênticas às bibliotecas do R do Databricks Runtime 11.0.

Bibliotecas do Java e do Scala (cluster do Scala 2.12)

Além das bibliotecas do Java e do Scala no Databricks Runtime 11.0, o Databricks Runtime 11.0 ML contém os seguintes JARs:

Clusters de CPU

ID do Grupo Artifact ID Versão
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-spark_2.12 1.5.2
ml.dmlc xgboost4j_2.12 1.5.2
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.26.0
org.mlflow mlflow-spark 1.26.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

Clusters de GPU

ID do Grupo Artifact ID Versão
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-spark_2.12 1.5.2
ml.dmlc xgboost4j_2.12 1.5.2
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.26.0
org.mlflow mlflow-spark 1.26.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0