Run Klasa
Definiuje klasę bazową dla wszystkich przebiegów eksperymentów usługi Azure Machine Learning.
Przebieg reprezentuje jedną wersję próbną eksperymentu. Uruchomienia służą do monitorowania asynchronicznego wykonywania wersji próbnej, metryk dziennika i przechowywania danych wyjściowych wersji próbnej oraz analizowania wyników i uzyskiwania dostępu do artefaktów generowanych przez wersję próbną.
Obiekty uruchamiania są tworzone podczas przesyłania skryptu do trenowania modelu w wielu różnych scenariuszach w usłudze Azure Machine Learning, w tym przebiegów funkcji HyperDrive, przebiegów potoków i przebiegów automatycznego uczenia maszynowego. Obiekt Run jest również tworzony podczas submit korzystania z klasy lub start_logging z tą klasą Experiment .
Aby rozpocząć pracę z eksperymentami i przebiegami, zobacz
Zainicjuj obiekt Uruchom.
- Dziedziczenie
-
azureml._run_impl.run_base._RunBaseRun
Konstruktor
Run(experiment, run_id, outputs=None, **kwargs)
Parametry
Nazwa | Opis |
---|---|
experiment
Wymagane
|
Zawierający eksperyment. |
run_id
Wymagane
|
Identyfikator przebiegu. |
outputs
|
Dane wyjściowe do śledzenia. Domyślna wartość: None
|
_run_dto
Wymagane
|
<xref:azureml._restclient.models.run_dto.RunDto>
Tylko do użytku wewnętrznego. |
kwargs
Wymagane
|
Słownik dodatkowych parametrów konfiguracji. |
experiment
Wymagane
|
Zawierający eksperyment. |
run_id
Wymagane
|
Identyfikator przebiegu. |
outputs
Wymagane
|
Dane wyjściowe do śledzenia. |
kwargs
Wymagane
|
Słownik dodatkowych parametrów konfiguracji. |
Uwagi
Przebieg reprezentuje jedną wersję próbną eksperymentu. Obiekt Run służy do monitorowania asynchronicznego wykonywania wersji próbnej, metryk dziennika i przechowywania danych wyjściowych wersji próbnej oraz analizowania wyników i uzyskiwania dostępu do artefaktów generowanych przez wersję próbną.
Uruchamianie jest używane wewnątrz kodu eksperymentowania w celu rejestrowania metryk i artefaktów w usłudze Historia uruchamiania.
Uruchamianie jest używane poza eksperymentami w celu monitorowania postępu oraz wykonywania zapytań i analizowania wygenerowanych metryk i wyników.
Funkcja Uruchom obejmuje następujące funkcje:
Przechowywanie i pobieranie metryk i danych
Przekazywanie i pobieranie plików
Używanie tagów oraz hierarchii podrzędnej w celu łatwego wyszukiwania poprzednich przebiegów
Rejestrowanie przechowywanych plików modelu jako modelu, który można zoperacjonalizować
Przechowywanie, modyfikowanie i pobieranie właściwości przebiegu
Ładowanie bieżącego uruchomienia ze środowiska zdalnego za pomocą get_context metody
Efektywne tworzenie migawek pliku lub katalogu w celu odtworzenia
Ta klasa współpracuje z Experiment tymi scenariuszami:
Tworzenie przebiegu przez wykonanie kodu przy użyciu polecenia submit
Tworzenie przebiegu interakcyjnego w notesie przy użyciu polecenia start_logging
Rejestrowanie metryk i przekazywanie artefaktów w eksperymencie, na przykład podczas korzystania z log
Odczytywanie metryk i pobieranie artefaktów podczas analizowania wyników eksperymentalnych, takich jak podczas korzystania z get_metrics
Aby przesłać przebieg, utwórz obiekt konfiguracji opisujący sposób uruchamiania eksperymentu. Oto przykłady różnych obiektów konfiguracji, których można użyć:
azureml.train.automl.automlconfig.AutoMLConfig
azureml.train.hyperdrive.HyperDriveConfig
azureml.pipeline.core.Pipeline
azureml.pipeline.core.PublishedPipeline
azureml.pipeline.core.PipelineEndpoint
Podczas trenowania eksperymentu można dodać następujące metryki do przebiegu.
Wartość skalarna
Zarejestruj wartość liczbową lub ciągową do przebiegu przy użyciu podanej nazwy przy użyciu polecenia log. Rejestrowanie metryki w przebiegu powoduje, że metryka ma być przechowywana w rekordzie uruchamiania w eksperymencie. Tę samą metrykę można rejestrować wiele razy w ramach przebiegu. Wynik jest uznawany za wektor tej metryki.
Przykład:
run.log("accuracy", 0.95)
Lista
Zarejestruj listę wartości do uruchomienia przy użyciu podanej nazwy przy użyciu polecenia log_list.
Przykład:
run.log_list("accuracies", [0.6, 0.7, 0.87])
Wiersz
Użycie log_row metody tworzy metrykę z wieloma kolumnami zgodnie z opisem w temacie
kwargs
. Każdy nazwany parametr generuje kolumnę z określoną wartością.log_row
można wywołać raz, aby zarejestrować dowolną krotkę lub wiele razy w pętli w celu wygenerowania pełnej tabeli.Przykład:
run.log_row("Y over X", x=1, y=0.4)
Tabela
Rejestrowanie obiektu słownika w przebiegu przy użyciu podanej nazwy przy użyciu polecenia log_table.
Przykład:
run.log_table("Y over X", {"x":[1, 2, 3], "y":[0.6, 0.7, 0.89]})
Obraz
Rejestrowanie obrazu w rekordzie uruchamiania. Służy log_image do rejestrowania pliku obrazu lub wykresu matplotlib do uruchomienia. Te obrazy będą widoczne i porównywalne w rekordzie przebiegu.
Przykład:
run.log_image("ROC", path)
Metody
add_properties |
Dodaj niezmienne właściwości do przebiegu. Tagi i właściwości (zarówno dict[str, str]) różnią się w ich niezmienności. Właściwości są niezmienne, więc tworzą stały rekord do celów inspekcji. Tagi są modyfikowalne. Aby uzyskać więcej informacji na temat pracy z tagami i właściwościami, zobacz tagowanie i znajdowanie przebiegów. |
add_type_provider |
Rozszerzalność haka dla niestandardowych typów uruchomień przechowywanych w historii uruchamiania. |
cancel |
Oznacz przebieg jako anulowany. Jeśli istnieje skojarzone zadanie z ustawionym polem cancel_uri, zakończ to zadanie. |
child_run |
Utwórz uruchomienie podrzędne. |
clean |
Usuń pliki odpowiadające bieżącemu uruchomieniu w elemencie docelowym określonym w konfiguracji przebiegu. |
complete |
Poczekaj na przetworzenie kolejki zadań. Następnie przebieg jest oznaczony jako ukończony. Jest to zwykle używane w scenariuszach notesu interaktywnego. |
create_children |
Utwórz jedno lub wiele przebiegów podrzędnych. |
download_file |
Pobierz skojarzony plik z magazynu. |
download_files |
Pobierz pliki z danego prefiksu magazynu (nazwy folderu) lub całego kontenera, jeśli prefiks jest nieokreślony. |
fail |
Oznacz przebieg jako nieudany. Opcjonalnie ustaw właściwość Error przebiegu z komunikatem lub wyjątkiem przekazanym do . |
flush |
Poczekaj na przetworzenie kolejki zadań. |
get |
Pobierz przebieg dla tego obszaru roboczego z identyfikatorem przebiegu. |
get_all_logs |
Pobierz wszystkie dzienniki przebiegu do katalogu. |
get_children |
Pobierz wszystkie elementy podrzędne dla bieżącego przebiegu wybranego przez określone filtry. |
get_context |
Zwraca bieżący kontekst usługi. Użyj tej metody, aby pobrać bieżący kontekst usługi na potrzeby rejestrowania metryk i przekazywania plików. Jeśli |
get_detailed_status |
Pobierz najnowszy stan przebiegu. Jeśli stan przebiegu to "W kolejce", zostaną wyświetlone szczegóły. |
get_details |
Pobierz definicję, informacje o stanie, bieżące pliki dziennika i inne szczegóły przebiegu. |
get_details_with_logs |
Zwracany jest stan przebiegu, w tym zawartość pliku dziennika. |
get_environment |
Pobierz definicję środowiska, która została użyta przez ten przebieg. |
get_file_names |
Wyświetl listę plików przechowywanych w skojarzeniu z przebiegiem. |
get_metrics |
Pobierz metryki zarejestrowane w przebiegu. Jeśli |
get_properties |
Pobierz najnowsze właściwości przebiegu z usługi. |
get_secret |
Pobierz wartość wpisu tajnego z kontekstu przebiegu. Pobierz wartość wpisu tajnego dla podanej nazwy. Nazwa wpisu tajnego odwołuje się do wartości przechowywanej w usłudze Azure Key Vault skojarzonej z obszarem roboczym. Aby zapoznać się z przykładem pracy z wpisami tajnymi, zobacz Używanie wpisów tajnych w przebiegach trenowania. |
get_secrets |
Pobierz wartości wpisów tajnych dla danej listy nazw wpisów tajnych. Pobierz słownik znalezionych i nie odnalezionych wpisów tajnych dla podanej listy nazw. Każda nazwa wpisu tajnego odwołuje się do wartości przechowywanej w usłudze Azure Key Vault skojarzonej z obszarem roboczym. Aby zapoznać się z przykładem pracy z wpisami tajnymi, zobacz Używanie wpisów tajnych w przebiegach trenowania. |
get_snapshot_id |
Pobierz najnowszy identyfikator migawki. |
get_status |
Pobierz najnowszy stan przebiegu. Zwracane typowe wartości to "Running", "Completed" i "Failed". |
get_submitted_run |
PRZESTARZAŁE. Użyj polecenia get_context. Pobierz przesłany przebieg dla tego eksperymentu. |
get_tags |
Pobieranie najnowszego zestawu modyfikowalnego tagów w przebiegu z usługi. |
list |
Pobierz listę przebiegów w eksperymencie określonym przez opcjonalne filtry. |
list_by_compute |
Pobierz listę przebiegów w obliczeniach określonych przez opcjonalne filtry. |
log |
Zarejestruj wartość metryki w przebiegu o podanej nazwie. |
log_accuracy_table |
Rejestrowanie tabeli dokładności w magazynie artefaktów. Metryka tabeli dokładności to metryka nieskalarna, która może służyć do tworzenia wielu typów wykresów liniowych, które różnią się w sposób ciągły w przestrzeni przewidywanych prawdopodobieństwa. Przykładami tych wykresów są ROC, precyzja kompletności i krzywe podnoszenia. Obliczenie tabeli dokładności jest podobne do obliczeń krzywej ROC. Krzywa ROC przechowuje rzeczywiste dodatnie wskaźniki i fałszywie dodatnie wskaźniki przy wielu różnych progach prawdopodobieństwa. W tabeli dokładności jest przechowywana nieprzetworzona liczba wyników prawdziwie dodatnich, wyników fałszywie dodatnich, wyników prawdziwie ujemnych i wyników fałszywie ujemnych przy wielu progach prawdopodobieństwa. Istnieją dwie metody wybierania progów: "prawdopodobieństwo" i "percentyl". Różnią się one sposobem próbkowania od przestrzeni przewidywanych prawdopodobieństwa. Progi prawdopodobieństwa są równomiernie rozmieszczonymi progami z zakresu od 0 do 1. Jeśli NUM_POINTS wynosi 5, progi prawdopodobieństwa to [0,0, 0,25, 0,5, 0,75, 1,0]. Progi percentylu są rozmieszczone zgodnie z rozkładem przewidywanych prawdopodobieństwa. Każdy próg odpowiada percentylowi danych z progiem prawdopodobieństwa. Na przykład jeśli NUM_POINTS wynosi 5, pierwszy próg będzie wynosić 0 percentyl, drugi w 25. percentyl, trzeci na 50. i tak dalej. Tabele prawdopodobieństwa i tabele percentylu są listami 3D, gdzie pierwszy wymiar reprezentuje etykietę klasy, drugi wymiar reprezentuje próbkę w jednym progu (skale z NUM_POINTS), a trzeci wymiar zawsze ma 4 wartości: TP, FP, TN, FN i zawsze w tej kolejności. Wartości pomyłek (TP, FP, TN, FN) są obliczane przy użyciu strategii jeden vs rest. Aby uzyskać więcej informacji, zobacz następujący link: https://en.wikipedia.org/wiki/Multiclass_classification N = liczba próbek w zestawie danych weryfikacji (na przykład 200) M = # progi = # próbki pobrane z przestrzeni prawdopodobieństwa (5 w przykładzie) C = # klasy w pełnym zestawie danych (przykład 3) Niektóre niezmienne wartości tabeli dokładności:
Uwaga: język M może być dowolną wartością i kontroluje rozdzielczość wykresów. Jest to niezależne od zestawu danych, jest definiowane podczas obliczania metryk i zawiera kompromis między miejscem do magazynowania, czasem obliczeń i rozdzielczością. Etykiety klas powinny być ciągami, wartości pomyłek powinny być liczbami całkowitymi, a progi powinny być zmiennoprzecinkami. |
log_confusion_matrix |
Zarejestruj macierz pomyłek w magazynie artefaktów. Spowoduje to rejestrowanie otoki wokół macierzy pomyłek sklearn. Dane metryk zawierają etykiety klas i listę 2D dla samej macierzy. Aby uzyskać więcej informacji na temat sposobu obliczania metryki, zobacz następujący link: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html |
log_image |
Rejestrowanie metryki obrazu w rekordzie uruchamiania. |
log_list |
Zarejestruj listę wartości metryk do przebiegu o podanej nazwie. |
log_predictions |
Rejestrowanie przewidywań w magazynie artefaktów. Spowoduje to dziennik oceny metryki, która może służyć do porównywania rozkładów rzeczywistych wartości docelowych z rozkładem przewidywanych wartości dla zadania regresji. Przewidywania są binned, a odchylenia standardowe są obliczane dla słupków błędów na wykresie liniowym. |
log_residuals |
Rejestruje reszty w magazynie artefaktów. Rejestruje dane potrzebne do wyświetlenia histogramu reszt dla zadania regresji. Reszty są przewidywane — rzeczywiste. Liczba liczników powinna być większa niż jedna krawędź. Zapoznaj się z dokumentacją histogramu numpy, aby zapoznać się z przykładami użycia liczb i krawędzi do reprezentowania histogramu. https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html |
log_row |
Zarejestruj metrykę wiersza w przebiegu o podanej nazwie. |
log_table |
Zarejestruj metrykę tabeli w przebiegu o podanej nazwie. |
register_model |
Rejestrowanie modelu na potrzeby operacjonalizacji. |
remove_tags |
Usuń listę tagów modyfikowalnych w tym przebiegu. |
restore_snapshot |
Przywróć migawkę jako plik ZIP. Zwraca ścieżkę do pliku ZIP. |
set_tags |
Dodaj lub zmodyfikuj zestaw tagów w przebiegu. Tagi, które nie są przekazywane w słowniku, pozostają niezmienione. Można również dodać proste tagi ciągów. Gdy te tagi są wyświetlane w słowniku tagów jako klucze, mają wartość None. Aby uzyskać więcej informacji, zobacz Tagowanie i znajdowanie przebiegów. |
start |
Oznacz przebieg jako rozpoczęty. Jest to zwykle używane w zaawansowanych scenariuszach, gdy przebieg został utworzony przez innego aktora. |
submit_child |
Prześlij eksperyment i zwróć aktywny przebieg podrzędny. |
tag |
Oznaczanie przebiegu kluczem ciągu i opcjonalną wartością ciągu. |
take_snapshot |
Zapisz migawkę pliku lub folderu wejściowego. |
upload_file |
Przekaż plik do rekordu uruchamiania. |
upload_files |
Przekaż pliki do rekordu uruchomienia. |
upload_folder |
Przekaż określony folder do podanej nazwy prefiksu. |
wait_for_completion |
Poczekaj na ukończenie tego przebiegu. Zwraca obiekt statusu po oczekiwaniu. |
add_properties
Dodaj niezmienne właściwości do przebiegu.
Tagi i właściwości (zarówno dict[str, str]) różnią się w ich niezmienności. Właściwości są niezmienne, więc tworzą stały rekord do celów inspekcji. Tagi są modyfikowalne. Aby uzyskać więcej informacji na temat pracy z tagami i właściwościami, zobacz tagowanie i znajdowanie przebiegów.
add_properties(properties)
Parametry
Nazwa | Opis |
---|---|
properties
Wymagane
|
Ukryte właściwości przechowywane w obiekcie run. |
add_type_provider
Rozszerzalność haka dla niestandardowych typów uruchomień przechowywanych w historii uruchamiania.
static add_type_provider(runtype, run_factory)
Parametry
Nazwa | Opis |
---|---|
runtype
Wymagane
|
Wartość Elementu Run.type, dla którego zostanie wywołana fabryka. Przykłady obejmują "hyperdrive" lub "azureml.scriptrun", ale można je rozszerzyć za pomocą typów niestandardowych. |
run_factory
Wymagane
|
<xref:function>
Funkcja z podpisem (Experiment, RunDto) —> uruchamianie, które ma być wywoływane podczas uruchamiania listy. |
cancel
Oznacz przebieg jako anulowany.
Jeśli istnieje skojarzone zadanie z ustawionym polem cancel_uri, zakończ to zadanie.
cancel()
child_run
Utwórz uruchomienie podrzędne.
child_run(name=None, run_id=None, outputs=None)
Parametry
Nazwa | Opis |
---|---|
name
|
Opcjonalna nazwa przebiegu podrzędnego, zazwyczaj określona dla "części". Domyślna wartość: None
|
run_id
|
Opcjonalny identyfikator uruchomienia dla elementu podrzędnego, w przeciwnym razie jest generowany automatycznie. Zazwyczaj ten parametr nie jest ustawiony. Domyślna wartość: None
|
outputs
|
Opcjonalny katalog wyjściowy do śledzenia dla elementu podrzędnego. Domyślna wartość: None
|
Zwraca
Typ | Opis |
---|---|
Uruchom element podrzędny. |
Uwagi
Służy to do izolowania części przebiegu w podsekcji. Można to zrobić w celu zidentyfikowania "części" przebiegu, które są interesujące do oddzielenia lub przechwycenia niezależnych metryk między interacją podprocesu.
Jeśli dla podrzędnego uruchomienia zostanie ustawiony katalog wyjściowy, zawartość tego katalogu zostanie przekazana do podrzędnego rekordu uruchamiania po zakończeniu działania podrzędnego.
clean
Usuń pliki odpowiadające bieżącemu uruchomieniu w elemencie docelowym określonym w konfiguracji przebiegu.
clean()
Zwraca
Typ | Opis |
---|---|
Lista usuniętych plików. |
complete
Poczekaj na przetworzenie kolejki zadań.
Następnie przebieg jest oznaczony jako ukończony. Jest to zwykle używane w scenariuszach notesu interaktywnego.
complete(_set_status=True)
Parametry
Nazwa | Opis |
---|---|
_set_status
|
Wskazuje, czy zdarzenie stanu ma być wysyłane do śledzenia. Domyślna wartość: True
|
create_children
Utwórz jedno lub wiele przebiegów podrzędnych.
create_children(count=None, tag_key=None, tag_values=None)
Parametry
Nazwa | Opis |
---|---|
count
|
Opcjonalna liczba elementów podrzędnych do utworzenia. Domyślna wartość: None
|
tag_key
|
Opcjonalny klucz do wypełnienia wpisu Tagi we wszystkich utworzonych elementach podrzędnych. Domyślna wartość: None
|
tag_Values
Wymagane
|
Opcjonalna lista wartości, które będą mapować na tagi[tag_key] dla listy utworzonych przebiegów. |
tag_values
|
Domyślna wartość: None
|
Zwraca
Typ | Opis |
---|---|
Lista przebiegów podrzędnych. |
Uwagi
Należy określić parametr count
LUB parametry tag_key
I tag_values
.
download_file
Pobierz skojarzony plik z magazynu.
download_file(name, output_file_path=None, _validate_checksum=False)
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa artefaktu do pobrania. |
output_file_path
Wymagane
|
Ścieżka lokalna, w której ma być przechowywany artefakt. |
download_files
Pobierz pliki z danego prefiksu magazynu (nazwy folderu) lub całego kontenera, jeśli prefiks jest nieokreślony.
download_files(prefix=None, output_directory=None, output_paths=None, batch_size=100, append_prefix=True, timeout_seconds=None)
Parametry
Nazwa | Opis |
---|---|
prefix
Wymagane
|
Prefiks ścieżki plików w kontenerze, z którego mają być pobierane wszystkie artefakty. |
output_directory
Wymagane
|
Opcjonalny katalog używany przez wszystkie ścieżki artefaktów jako prefiks. |
output_paths
Wymagane
|
[str]
Opcjonalne ścieżki plików, w których mają być przechowywane pobrane artefakty. Powinna być unikatowa i dopasowywana długość ścieżek. |
batch_size
Wymagane
|
Liczba plików do pobrania na partię. Wartość domyślna to 100 plików. |
append_prefix
Wymagane
|
Opcjonalna flaga dołączania określonego prefiksu z końcowej ścieżki pliku wyjściowego. Jeśli wartość False, prefiks zostanie usunięty ze ścieżki pliku wyjściowego. |
timeout_seconds
Wymagane
|
Limit czasu pobierania plików. |
fail
Oznacz przebieg jako nieudany.
Opcjonalnie ustaw właściwość Error przebiegu z komunikatem lub wyjątkiem przekazanym do .error_details
fail(error_details=None, error_code=None, _set_status=True)
Parametry
Nazwa | Opis |
---|---|
error_details
|
str lub
BaseException
Opcjonalne szczegóły błędu. Domyślna wartość: None
|
error_code
|
Opcjonalny kod błędu błędu klasyfikacji błędów. Domyślna wartość: None
|
_set_status
|
Wskazuje, czy zdarzenie stanu ma być wysyłane do śledzenia. Domyślna wartość: True
|
flush
Poczekaj na przetworzenie kolejki zadań.
flush(timeout_seconds=300)
Parametry
Nazwa | Opis |
---|---|
timeout_seconds
|
Czas oczekiwania (w sekundach) na przetworzenie kolejki zadań. Domyślna wartość: 300
|
get
Pobierz przebieg dla tego obszaru roboczego z identyfikatorem przebiegu.
static get(workspace, run_id)
Parametry
Nazwa | Opis |
---|---|
workspace
Wymagane
|
Zawierający obszar roboczy. |
run_id
Wymagane
|
Identyfikator przebiegu. |
Zwraca
Typ | Opis |
---|---|
Przesłany przebieg. |
get_all_logs
Pobierz wszystkie dzienniki przebiegu do katalogu.
get_all_logs(destination=None)
Parametry
Nazwa | Opis |
---|---|
destination
|
Ścieżka docelowa do przechowywania dzienników. Jeśli nie zostanie określona, w katalogu projektu zostanie utworzony katalog o nazwie o nazwie identyfikator uruchomienia. Domyślna wartość: None
|
Zwraca
Typ | Opis |
---|---|
Lista nazw pobranych dzienników. |
get_children
Pobierz wszystkie elementy podrzędne dla bieżącego przebiegu wybranego przez określone filtry.
get_children(recursive=False, tags=None, properties=None, type=None, status=None, _rehydrate_runs=True)
Parametry
Nazwa | Opis |
---|---|
recursive
|
Wskazuje, czy mają być powtarzane przez wszystkie elementy podrzędne. Domyślna wartość: False
|
tags
|
Jeśli zostanie określony, funkcja zwraca przebiegi pasujące do określonego "tagu" lub {"tag": "value"}. Domyślna wartość: None
|
properties
|
Jeśli zostanie określony, funkcja zwraca przebiegi zgodne z określoną właściwością lub {"property": "value"}. Domyślna wartość: None
|
type
|
Jeśli zostanie określony, funkcja zwraca przebiegi pasujące do tego typu. Domyślna wartość: None
|
status
|
Jeśli zostanie określony, funkcja zwraca przebiegi ze stanem określonym jako "status". Domyślna wartość: None
|
_rehydrate_runs
|
Wskazuje, czy należy utworzyć wystąpienie przebiegu oryginalnego typu, czy podstawowego przebiegu. Domyślna wartość: True
|
Zwraca
Typ | Opis |
---|---|
Lista Run obiektów. |
get_context
Zwraca bieżący kontekst usługi.
Użyj tej metody, aby pobrać bieżący kontekst usługi na potrzeby rejestrowania metryk i przekazywania plików. Jeśli allow_offline
ma wartość True (wartość domyślna), akcje względem obiektu Run zostaną wydrukowane w celu ustawienia standardowego.
get_context(allow_offline=True, used_for_context_manager=False, **kwargs)
Parametry
Nazwa | Opis |
---|---|
cls
Wymagane
|
Wskazuje metodę klasy. |
allow_offline
|
Zezwalaj kontekstowi usługi na powrót do trybu offline, aby skrypt trenowania mógł być testowany lokalnie bez przesyłania zadania za pomocą zestawu SDK. Wartość true domyślnie. Domyślna wartość: True
|
kwargs
Wymagane
|
Słownik dodatkowych parametrów. |
used_for_context_manager
|
Domyślna wartość: False
|
Zwraca
Typ | Opis |
---|---|
Przesłany przebieg. |
Uwagi
Ta funkcja jest często używana do pobierania uwierzytelnionego obiektu Run wewnątrz skryptu, który ma zostać przesłany do wykonania za pośrednictwem pliku experiment.submit(). Ten obiekt przebiegu jest zarówno kontekstem uwierzytelnianym w celu komunikowania się z usługami Azure Machine Learning, jak i kontenerem koncepcyjnym, w którym znajdują się metryki, pliki (artefakty) i modele.
run = Run.get_context() # allow_offline=True by default, so can be run locally as well
...
run.log("Accuracy", 0.98)
run.log_row("Performance", epoch=e, error=err)
get_detailed_status
Pobierz najnowszy stan przebiegu. Jeśli stan przebiegu to "W kolejce", zostaną wyświetlone szczegóły.
get_detailed_status()
Zwraca
Typ | Opis |
---|---|
Najnowszy stan i szczegóły |
Uwagi
status: bieżący stan przebiegu. Taka sama wartość jak zwrócona z get_status().
szczegóły: szczegółowe informacje dotyczące bieżącego stanu.
run = experiment.submit(config)
details = run.get_detailed_status()
# details = {
# 'status': 'Queued',
# 'details': 'Run requested 1 node(s). Run is in pending status.',
# }
get_details
Pobierz definicję, informacje o stanie, bieżące pliki dziennika i inne szczegóły przebiegu.
get_details()
Zwraca
Typ | Opis |
---|---|
Zwracanie szczegółów przebiegu |
Uwagi
Zwrócony słownik zawiera następujące pary klucz-wartość:
runId: identyfikator tego przebiegu.
Docelowego
status: bieżący stan przebiegu. Taka sama wartość jak zwrócona z get_status().
startTimeUtc: czas UTC rozpoczęcia tego przebiegu w iso8601.
endTimeUtc: czas UTC zakończenia tego przebiegu (Ukończono lub Niepowodzenie) w iso8601.
Ten klucz nie istnieje, jeśli przebieg jest nadal w toku.
properties: Niezmienne pary klucz-wartość skojarzone z przebiegiem. Domyślne właściwości obejmują identyfikator migawki przebiegu oraz informacje o repozytorium Git, z którego utworzono przebieg (jeśli istnieje). Dodatkowe właściwości można dodać do przebiegu przy użyciu polecenia add_properties.
inputDatasets: wejściowe zestawy danych skojarzone z uruchomieniem.
outputDatasets: wyjściowe zestawy danych skojarzone z uruchomieniem.
Logfiles
submittedBy
run = experiment.start_logging()
details = run.get_details()
# details = {
# 'runId': '5c24aa28-6e4a-4572-96a0-fb522d26fe2d',
# 'target': 'sdk',
# 'status': 'Running',
# 'startTimeUtc': '2019-01-01T13:08:01.713777Z',
# 'endTimeUtc': '2019-01-01T17:15:65.986253Z',
# 'properties': {
# 'azureml.git.repository_uri': 'https://example.com/my/git/repo',
# 'azureml.git.branch': 'master',
# 'azureml.git.commit': '7dc972657c2168927a02c3bc2b161e0f370365d7',
# 'azureml.git.dirty': 'True',
# 'mlflow.source.git.repoURL': 'https://example.com/my/git/repo',
# 'mlflow.source.git.branch': 'master',
# 'mlflow.source.git.commit': '7dc972657c2168927a02c3bc2b161e0f370365d7',
# 'ContentSnapshotId': 'b4689489-ce2f-4db5-b6d7-6ad11e77079c'
# },
# 'inputDatasets': [{
# 'dataset': {'id': 'cdebf245-701d-4a68-8055-41f9cf44f298'},
# 'consumptionDetails': {
# 'type': 'RunInput',
# 'inputName': 'training-data',
# 'mechanism': 'Mount',
# 'pathOnCompute': '/mnt/datasets/train'
# }
# }],
# 'outputDatasets': [{
# 'dataset': {'id': 'd04e8a19-1caa-4b1f-b318-4cbff9af9615'},
# 'outputType': 'RunOutput',
# 'outputDetails': {
# 'outputName': 'training-result'
# }
# }],
# 'runDefinition': {},
# 'logFiles': {},
# 'submittedBy': 'Alan Turing'
# }
get_details_with_logs
Zwracany jest stan przebiegu, w tym zawartość pliku dziennika.
get_details_with_logs()
Zwraca
Typ | Opis |
---|---|
Zwraca stan przebiegu z zawartością pliku dziennika. |
get_environment
Pobierz definicję środowiska, która została użyta przez ten przebieg.
get_environment()
Zwraca
Typ | Opis |
---|---|
Zwróć obiekt środowiska. |
get_file_names
Wyświetl listę plików przechowywanych w skojarzeniu z przebiegiem.
get_file_names()
Zwraca
Typ | Opis |
---|---|
Lista ścieżek dla istniejących artefaktów |
get_metrics
Pobierz metryki zarejestrowane w przebiegu.
Jeśli recursive
domyślnie ma wartość True (Fałsz), pobierz metryki dla przebiegów w poddrzewie danego przebiegu.
get_metrics(name=None, recursive=False, run_type=None, populate=False)
Parametry
Nazwa | Opis |
---|---|
name
|
Nazwa metryki. Domyślna wartość: None
|
recursive
|
Wskazuje, czy mają być powtarzane przez wszystkie elementy podrzędne. Domyślna wartość: False
|
run_type
|
Domyślna wartość: None
|
populate
|
Wskazuje, czy pobrać zawartość danych zewnętrznych połączonych z metrykami. Domyślna wartość: False
|
Zwraca
Typ | Opis |
---|---|
Słownik zawierający metryki użytkowników. |
Uwagi
run = experiment.start_logging() # run id: 123
run.log("A", 1)
with run.child_run() as child: # run id: 456
child.log("A", 2)
metrics = run.get_metrics()
# metrics = { 'A': 1 }
metrics = run.get_metrics(recursive=True)
# metrics = { '123': { 'A': 1 }, '456': { 'A': 2 } } note key is runId
get_properties
Pobierz najnowsze właściwości przebiegu z usługi.
get_properties()
Zwraca
Typ | Opis |
---|---|
Właściwości przebiegu. |
Uwagi
Właściwości są niezmiennymi informacjami generowanymi przez system, takimi jak czas trwania, data wykonania, użytkownik i właściwości niestandardowe dodane za pomocą add_properties metody . Aby uzyskać więcej informacji, zobacz Tagowanie i znajdowanie przebiegów.
W przypadku przesyłania zadania do usługi Azure Machine Learning, jeśli pliki źródłowe są przechowywane w lokalnym repozytorium Git, informacje o repozytorium są przechowywane jako właściwości. Te właściwości usługi Git są dodawane podczas tworzenia przebiegu lub wywoływania pliku Experiment.submit. Aby uzyskać więcej informacji na temat właściwości usługi Git, zobacz Integracja z usługą Git dla usługi Azure Machine Learning.
get_secret
Pobierz wartość wpisu tajnego z kontekstu przebiegu.
Pobierz wartość wpisu tajnego dla podanej nazwy. Nazwa wpisu tajnego odwołuje się do wartości przechowywanej w usłudze Azure Key Vault skojarzonej z obszarem roboczym. Aby zapoznać się z przykładem pracy z wpisami tajnymi, zobacz Używanie wpisów tajnych w przebiegach trenowania.
get_secret(name)
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa wpisu tajnego, dla którego ma być zwracany wpis tajny. |
Zwraca
Typ | Opis |
---|---|
Wartość wpisu tajnego. |
get_secrets
Pobierz wartości wpisów tajnych dla danej listy nazw wpisów tajnych.
Pobierz słownik znalezionych i nie odnalezionych wpisów tajnych dla podanej listy nazw. Każda nazwa wpisu tajnego odwołuje się do wartości przechowywanej w usłudze Azure Key Vault skojarzonej z obszarem roboczym. Aby zapoznać się z przykładem pracy z wpisami tajnymi, zobacz Używanie wpisów tajnych w przebiegach trenowania.
get_secrets(secrets)
Parametry
Nazwa | Opis |
---|---|
secrets
Wymagane
|
Lista nazw wpisów tajnych, dla których mają być zwracane wartości wpisów tajnych. |
Zwraca
Typ | Opis |
---|---|
Zwraca słownik znalezionych i nieznanych wpisów tajnych. |
get_snapshot_id
Pobierz najnowszy identyfikator migawki.
get_snapshot_id()
Zwraca
Typ | Opis |
---|---|
Najnowszy identyfikator migawki. |
get_status
Pobierz najnowszy stan przebiegu.
Zwracane typowe wartości to "Running", "Completed" i "Failed".
get_status()
Zwraca
Typ | Opis |
---|---|
Najnowszy stan. |
Uwagi
NotStarted — jest to tymczasowy stan obiektów uruchomień po stronie klienta przed przesłaniem do chmury.
Uruchamianie — uruchomienie zostało rozpoczęte w chmurze. Obiekt wywołujący ma w tym momencie identyfikator uruchomienia.
Aprowizacja — zwracana podczas tworzenia zasobów obliczeniowych na żądanie dla danego przesłania zadania.
Przygotowywanie — środowisko uruchomieniowe jest przygotowywane:
Kompilacja obrazu platformy Docker
Konfiguracja środowiska conda
W kolejce — zadanie jest kolejkowane w docelowym obiekcie obliczeniowym. Na przykład w usłudze BatchAI zadanie jest w stanie w kolejce
podczas oczekiwania na gotowość wszystkich żądanych węzłów.
Uruchomione — zadanie zostało uruchomione w docelowym obiekcie obliczeniowym.
Finalizowanie — kod użytkownika został ukończony, a przebieg znajduje się na etapach przetwarzania końcowego.
CancelRequested — zażądano anulowania zadania.
Ukończono — przebieg został ukończony pomyślnie. Obejmuje to zarówno kod użytkownika, jak i uruchamianie
etapy przetwarzania końcowego.
Niepowodzenie — przebieg zakończył się niepowodzeniem. Zazwyczaj właściwość Error w przebiegu zawiera szczegółowe informacje o przyczynie.
Anulowano — następuje żądanie anulowania i wskazuje, że przebieg został pomyślnie anulowany.
NotResponding — w przypadku przebiegów z włączonymi pulsami nie wysłano ostatnio pulsu.
run = experiment.submit(config)
while run.get_status() not in ['Completed', 'Failed']: # For example purposes only, not exhaustive
print('Run {} not in terminal state'.format(run.id))
time.sleep(10)
get_submitted_run
PRZESTARZAŁE. Użyj polecenia get_context.
Pobierz przesłany przebieg dla tego eksperymentu.
get_submitted_run(**kwargs)
Zwraca
Typ | Opis |
---|---|
Przesłany przebieg. |
get_tags
Pobieranie najnowszego zestawu modyfikowalnego tagów w przebiegu z usługi.
get_tags()
Zwraca
Typ | Opis |
---|---|
Tagi przechowywane w obiekcie run. |
list
Pobierz listę przebiegów w eksperymencie określonym przez opcjonalne filtry.
static list(experiment, type=None, tags=None, properties=None, status=None, include_children=False, _rehydrate_runs=True)
Parametry
Nazwa | Opis |
---|---|
experiment
Wymagane
|
Zawierający eksperyment. |
type
|
Jeśli zostanie określony, funkcja zwraca przebiegi pasujące do określonego typu. Domyślna wartość: None
|
tags
|
Jeśli zostanie określony, funkcja zwraca przebiegi pasujące do określonego "tagu" lub {"tag": "value"}. Domyślna wartość: None
|
properties
|
Jeśli zostanie określony, funkcja zwraca przebiegi zgodne z określoną właściwością lub {"property": "value"}. Domyślna wartość: None
|
status
|
Jeśli zostanie określony, funkcja zwraca przebiegi ze stanem określonym jako "status". Domyślna wartość: None
|
include_children
|
W przypadku ustawienia wartości true pobierz wszystkie przebiegi, nie tylko te najwyższego poziomu. Domyślna wartość: False
|
_rehydrate_runs
|
Jeśli jest ustawiona wartość True (domyślnie), użyje zarejestrowanego dostawcy do ponownego zainicjowania obiektu dla tego typu zamiast podstawowego uruchomienia. Domyślna wartość: True
|
Zwraca
Typ | Opis |
---|---|
Lista przebiegów. |
Uwagi
Poniższy przykład kodu przedstawia niektóre zastosowania list
metody .
favorite_completed_runs = Run.list(experiment, status='Completed', tags='favorite')
all_distinct_runs = Run.list(experiment)
and_their_children = Run.list(experiment, include_children=True)
only_script_runs = Run.list(experiment, type=ScriptRun.RUN_TYPE)
list_by_compute
Pobierz listę przebiegów w obliczeniach określonych przez opcjonalne filtry.
static list_by_compute(compute, type=None, tags=None, properties=None, status=None)
Parametry
Nazwa | Opis |
---|---|
compute
Wymagane
|
Zawierające zasoby obliczeniowe. |
type
|
Jeśli zostanie określony, funkcja zwraca przebiegi pasujące do określonego typu. Domyślna wartość: None
|
tags
|
Jeśli zostanie określony, funkcja zwraca przebiegi pasujące do określonego "tagu" lub {"tag": "value"}. Domyślna wartość: None
|
properties
|
Jeśli zostanie określony, funkcja zwraca przebiegi zgodne z określoną właściwością lub {"property": "value"}. Domyślna wartość: None
|
status
|
Jeśli zostanie określony, funkcja zwraca przebiegi ze stanem określonym jako "status". Dozwolone wartości to "Running" (Uruchomione) i "Queued" (W kolejce). Domyślna wartość: None
|
Zwraca
Typ | Opis |
---|---|
<xref:builtin.generator>
|
generator ~_restclient.models.RunDto |
log
Zarejestruj wartość metryki w przebiegu o podanej nazwie.
log(name, value, description='', step=None)
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa metryki. |
value
Wymagane
|
Wartość, która ma zostać opublikowana w usłudze. |
description
Wymagane
|
Opcjonalny opis metryki. |
step
|
Opcjonalna oś określająca kolejność wartości w ramach metryki. Domyślna wartość: None
|
Uwagi
Rejestrowanie metryki w przebiegu powoduje, że metryka jest przechowywana w rekordzie przebiegu w eksperymencie. Tę samą metrykę można rejestrować wiele razy w ramach przebiegu. Wynik jest traktowany jako wektor tej metryki. Jeśli krok jest określony dla metryki, musi zostać określony dla wszystkich wartości.
log_accuracy_table
Rejestrowanie tabeli dokładności w magazynie artefaktów.
Metryka tabeli dokładności to metryka nieskalarna, która może służyć do tworzenia wielu typów wykresów liniowych, które różnią się w sposób ciągły w przestrzeni przewidywanych prawdopodobieństwa. Przykładami tych wykresów są ROC, precyzja kompletności i krzywe podnoszenia.
Obliczenie tabeli dokładności jest podobne do obliczeń krzywej ROC. Krzywa ROC przechowuje rzeczywiste dodatnie wskaźniki i fałszywie dodatnie wskaźniki przy wielu różnych progach prawdopodobieństwa. W tabeli dokładności jest przechowywana nieprzetworzona liczba wyników prawdziwie dodatnich, wyników fałszywie dodatnich, wyników prawdziwie ujemnych i wyników fałszywie ujemnych przy wielu progach prawdopodobieństwa.
Istnieją dwie metody wybierania progów: "prawdopodobieństwo" i "percentyl". Różnią się one sposobem próbkowania od przestrzeni przewidywanych prawdopodobieństwa.
Progi prawdopodobieństwa są równomiernie rozmieszczonymi progami z zakresu od 0 do 1. Jeśli NUM_POINTS wynosi 5, progi prawdopodobieństwa to [0,0, 0,25, 0,5, 0,75, 1,0].
Progi percentylu są rozmieszczone zgodnie z rozkładem przewidywanych prawdopodobieństwa. Każdy próg odpowiada percentylowi danych z progiem prawdopodobieństwa. Na przykład jeśli NUM_POINTS wynosi 5, pierwszy próg będzie wynosić 0 percentyl, drugi w 25. percentyl, trzeci na 50. i tak dalej.
Tabele prawdopodobieństwa i tabele percentylu są listami 3D, gdzie pierwszy wymiar reprezentuje etykietę klasy, drugi wymiar reprezentuje próbkę w jednym progu (skale z NUM_POINTS), a trzeci wymiar zawsze ma 4 wartości: TP, FP, TN, FN i zawsze w tej kolejności.
Wartości pomyłek (TP, FP, TN, FN) są obliczane przy użyciu strategii jeden vs rest. Aby uzyskać więcej informacji, zobacz następujący link: https://en.wikipedia.org/wiki/Multiclass_classification
N = liczba próbek w zestawie danych weryfikacji (na przykład 200) M = # progi = # próbki pobrane z przestrzeni prawdopodobieństwa (5 w przykładzie) C = # klasy w pełnym zestawie danych (przykład 3)
Niektóre niezmienne wartości tabeli dokładności:
- TP + FP + TN + FN = N dla wszystkich progów dla wszystkich klas
- Tp + FN jest taka sama we wszystkich progach dla dowolnej klasy
- TN + FP jest taka sama dla wszystkich progów dla każdej klasy
- Tabele prawdopodobieństwa i tabele percentylu mają kształt [C, M, 4]
Uwaga: język M może być dowolną wartością i kontroluje rozdzielczość wykresów. Jest to niezależne od zestawu danych, jest definiowane podczas obliczania metryk i zawiera kompromis między miejscem do magazynowania, czasem obliczeń i rozdzielczością.
Etykiety klas powinny być ciągami, wartości pomyłek powinny być liczbami całkowitymi, a progi powinny być zmiennoprzecinkami.
log_accuracy_table(name, value, description='')
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa tabeli dokładności. |
value
Wymagane
|
Kod JSON zawierający właściwości nazwy, wersji i danych. |
description
Wymagane
|
Opcjonalny opis metryki. |
Uwagi
Przykład prawidłowej wartości JSON:
{
"schema_type": "accuracy_table",
"schema_version": "1.0.1",
"data": {
"probability_tables": [
[
[82, 118, 0, 0],
[75, 31, 87, 7],
[66, 9, 109, 16],
[46, 2, 116, 36],
[0, 0, 118, 82]
],
[
[60, 140, 0, 0],
[56, 20, 120, 4],
[47, 4, 136, 13],
[28, 0, 140, 32],
[0, 0, 140, 60]
],
[
[58, 142, 0, 0],
[53, 29, 113, 5],
[40, 10, 132, 18],
[24, 1, 141, 34],
[0, 0, 142, 58]
]
],
"percentile_tables": [
[
[82, 118, 0, 0],
[82, 67, 51, 0],
[75, 26, 92, 7],
[48, 3, 115, 34],
[3, 0, 118, 79]
],
[
[60, 140, 0, 0],
[60, 89, 51, 0],
[60, 41, 99, 0],
[46, 5, 135, 14],
[3, 0, 140, 57]
],
[
[58, 142, 0, 0],
[56, 93, 49, 2],
[54, 47, 95, 4],
[41, 10, 132, 17],
[3, 0, 142, 55]
]
],
"probability_thresholds": [0.0, 0.25, 0.5, 0.75, 1.0],
"percentile_thresholds": [0.0, 0.01, 0.24, 0.98, 1.0],
"class_labels": ["0", "1", "2"]
}
}
log_confusion_matrix
Zarejestruj macierz pomyłek w magazynie artefaktów.
Spowoduje to rejestrowanie otoki wokół macierzy pomyłek sklearn. Dane metryk zawierają etykiety klas i listę 2D dla samej macierzy. Aby uzyskać więcej informacji na temat sposobu obliczania metryki, zobacz następujący link: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
log_confusion_matrix(name, value, description='')
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa macierzy pomyłek. |
value
Wymagane
|
Kod JSON zawierający właściwości nazwy, wersji i danych. |
description
Wymagane
|
Opcjonalny opis metryki. |
Uwagi
Przykład prawidłowej wartości JSON:
{
"schema_type": "confusion_matrix",
"schema_version": "1.0.0",
"data": {
"class_labels": ["0", "1", "2", "3"],
"matrix": [
[3, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0],
[0, 0, 0, 1]
]
}
}
log_image
Rejestrowanie metryki obrazu w rekordzie uruchamiania.
log_image(name, path=None, plot=None, description='')
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa metryki. |
path
Wymagane
|
Ścieżka lub strumień obrazu. |
plot
Wymagane
|
<xref:matplotlib.pyplot>
Wykres do rejestrowania jako obraz. |
description
Wymagane
|
Opcjonalny opis metryki. |
Uwagi
Ta metoda służy do rejestrowania pliku obrazu lub wykresu matplotlib do uruchomienia. Te obrazy będą widoczne i porównywalne w rekordzie przebiegu.
log_list
Zarejestruj listę wartości metryk do przebiegu o podanej nazwie.
log_list(name, value, description='')
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa metryki. |
value
Wymagane
|
Wartości metryki. |
description
Wymagane
|
Opcjonalny opis metryki. |
log_predictions
Rejestrowanie przewidywań w magazynie artefaktów.
Spowoduje to dziennik oceny metryki, która może służyć do porównywania rozkładów rzeczywistych wartości docelowych z rozkładem przewidywanych wartości dla zadania regresji.
Przewidywania są binned, a odchylenia standardowe są obliczane dla słupków błędów na wykresie liniowym.
log_predictions(name, value, description='')
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa przewidywań. |
value
Wymagane
|
Kod JSON zawierający właściwości nazwy, wersji i danych. |
description
Wymagane
|
Opcjonalny opis metryki. |
Uwagi
Przykład prawidłowej wartości JSON:
{
"schema_type": "predictions",
"schema_version": "1.0.0",
"data": {
"bin_averages": [0.25, 0.75],
"bin_errors": [0.013, 0.042],
"bin_counts": [56, 34],
"bin_edges": [0.0, 0.5, 1.0]
}
}
log_residuals
Rejestruje reszty w magazynie artefaktów.
Rejestruje dane potrzebne do wyświetlenia histogramu reszt dla zadania regresji. Reszty są przewidywane — rzeczywiste.
Liczba liczników powinna być większa niż jedna krawędź. Zapoznaj się z dokumentacją histogramu numpy, aby zapoznać się z przykładami użycia liczb i krawędzi do reprezentowania histogramu. https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
log_residuals(name, value, description='')
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa reszt. |
value
Wymagane
|
Kod JSON zawierający właściwości nazwy, wersji i danych. |
description
Wymagane
|
Opcjonalny opis metryki. |
Uwagi
Przykład prawidłowej wartości JSON:
{
"schema_type": "residuals",
"schema_version": "1.0.0",
"data": {
"bin_edges": [50, 100, 200, 300, 350],
"bin_counts": [0.88, 20, 30, 50.99]
}
}
log_row
Zarejestruj metrykę wiersza w przebiegu o podanej nazwie.
log_row(name, description=None, **kwargs)
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa metryki. |
description
|
Opcjonalny opis metryki. Domyślna wartość: None
|
kwargs
Wymagane
|
Słownik dodatkowych parametrów. W tym przypadku kolumny metryki. |
Uwagi
Użycie polecenia log_row
tworzy metrykę tabeli z kolumnami zgodnie z opisem w artykule kwargs. Każdy nazwany parametr generuje kolumnę z określoną wartością.
log_row
Można wywołać raz, aby zarejestrować dowolną krotkę lub wiele razy w pętli w celu wygenerowania pełnej tabeli.
citrus = ['orange', 'lemon', 'lime']
sizes = [ 10, 7, 3]
for index in range(len(citrus)):
run.log_row("citrus", fruit = citrus[index], size=sizes[index])
log_table
Zarejestruj metrykę tabeli w przebiegu o podanej nazwie.
log_table(name, value, description='')
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa metryki. |
value
Wymagane
|
Wartość tabeli metryki, słownika, w którym klucze są kolumnami, które mają być publikowane w usłudze. |
description
Wymagane
|
Opcjonalny opis metryki. |
register_model
Rejestrowanie modelu na potrzeby operacjonalizacji.
register_model(model_name, model_path=None, tags=None, properties=None, model_framework=None, model_framework_version=None, description=None, datasets=None, sample_input_dataset=None, sample_output_dataset=None, resource_configuration=None, **kwargs)
Parametry
Nazwa | Opis |
---|---|
model_name
Wymagane
|
Nazwa modelu. |
model_path
|
Względna ścieżka chmury do modelu, na przykład "outputs/modelname".
Jeśli nie określono wartości (None), Domyślna wartość: None
|
tags
|
Słownik tagów wartości klucza do przypisania do modelu. Domyślna wartość: None
|
properties
|
Słownik właściwości wartości klucza do przypisania do modelu. Tych właściwości nie można zmienić po utworzeniu modelu, ale można dodać nowe pary klucz-wartość. Domyślna wartość: None
|
model_framework
|
Struktura modelu do zarejestrowania. Obecnie obsługiwane platformy: TensorFlow, ScikitLearn, Onnx, Custom, Multi Domyślna wartość: None
|
model_framework_version
|
Wersja struktury zarejestrowanego modelu. Domyślna wartość: None
|
description
|
Opcjonalny opis modelu. Domyślna wartość: None
|
datasets
|
Lista krotki, w których pierwszy element opisuje relację dataset-model, a drugi element to zestaw danych. Domyślna wartość: None
|
sample_input_dataset
|
Opcjonalny. Przykładowy wejściowy zestaw danych dla zarejestrowanego modelu Domyślna wartość: None
|
sample_output_dataset
|
Opcjonalny. Przykładowy wyjściowy zestaw danych dla zarejestrowanego modelu Domyślna wartość: None
|
resource_configuration
|
Opcjonalny. Konfiguracja zasobów do uruchamiania zarejestrowanego modelu Domyślna wartość: None
|
kwargs
Wymagane
|
Parametry opcjonalne. |
Zwraca
Typ | Opis |
---|---|
Zarejestrowany model. |
Uwagi
model = best_run.register_model(model_name = 'best_model', model_path = 'outputs/model.pkl')
remove_tags
Usuń listę tagów modyfikowalnych w tym przebiegu.
remove_tags(tags)
Parametry
Nazwa | Opis |
---|---|
tags
Wymagane
|
Lista tagów do usunięcia. |
Zwraca
Typ | Opis |
---|---|
Tagi przechowywane w obiekcie run |
restore_snapshot
Przywróć migawkę jako plik ZIP. Zwraca ścieżkę do pliku ZIP.
restore_snapshot(snapshot_id=None, path=None)
Parametry
Nazwa | Opis |
---|---|
snapshot_id
|
Identyfikator migawki do przywrócenia. Jeśli nie zostanie określona, zostanie użyta najnowsza wersja. Domyślna wartość: None
|
path
|
Ścieżka, w której jest zapisywany pobrany plik ZIP. Domyślna wartość: None
|
Zwraca
Typ | Opis |
---|---|
Ścieżka. |
set_tags
Dodaj lub zmodyfikuj zestaw tagów w przebiegu. Tagi, które nie są przekazywane w słowniku, pozostają niezmienione.
Można również dodać proste tagi ciągów. Gdy te tagi są wyświetlane w słowniku tagów jako klucze, mają wartość None. Aby uzyskać więcej informacji, zobacz Tagowanie i znajdowanie przebiegów.
set_tags(tags)
Parametry
Nazwa | Opis |
---|---|
tags
Wymagane
|
Tagi przechowywane w obiekcie run. |
start
Oznacz przebieg jako rozpoczęty.
Jest to zwykle używane w zaawansowanych scenariuszach, gdy przebieg został utworzony przez innego aktora.
start()
submit_child
Prześlij eksperyment i zwróć aktywny przebieg podrzędny.
submit_child(config, tags=None, **kwargs)
Parametry
Nazwa | Opis |
---|---|
config
Wymagane
|
Konfiguracja do przesłania. |
tags
|
Tagi do dodania do przesłanego przebiegu, np. {"tag": "value"}. Domyślna wartość: None
|
kwargs
Wymagane
|
Dodatkowe parametry używane w funkcji submit dla konfiguracji. |
Zwraca
Typ | Opis |
---|---|
Obiekt przebiegu. |
Uwagi
Submit to asynchroniczne wywołanie platformy Azure Machine Learning w celu wykonania wersji próbnej na sprzęcie lokalnym lub zdalnym. W zależności od konfiguracji przesyłanie automatycznie przygotuje środowiska wykonawcze, wykona kod i przechwyci kod źródłowy oraz wyniki do historii uruchamiania eksperymentu.
Aby przesłać eksperyment, należy najpierw utworzyć obiekt konfiguracji opisujący sposób uruchamiania eksperymentu. Konfiguracja zależy od wymaganego typu wersji próbnej.
Przykładowy sposób przesyłania eksperymentu podrzędnego z komputera lokalnego przy użyciu ScriptRunConfig metody jest następujący:
from azureml.core import ScriptRunConfig
# run a trial from the train.py code in your current directory
config = ScriptRunConfig(source_directory='.', script='train.py',
run_config=RunConfiguration())
run = parent_run.submit_child(config)
# get the url to view the progress of the experiment and then wait
# until the trial is complete
print(run.get_portal_url())
run.wait_for_completion()
Aby uzyskać szczegółowe informacje na temat konfigurowania przebiegu, zobacz submit.
tag
Oznaczanie przebiegu kluczem ciągu i opcjonalną wartością ciągu.
tag(key, value=None)
Parametry
Nazwa | Opis |
---|---|
key
Wymagane
|
Klucz tagu |
value
|
Opcjonalna wartość tagu Domyślna wartość: None
|
Uwagi
Tagi i właściwości w przebiegu to słowniki ciągu —> ciąg. Różnica między nimi jest niezmienność: tagi można ustawiać, aktualizować i usuwać, podczas gdy właściwości można dodawać tylko. Dzięki temu właściwości są bardziej odpowiednie dla wyzwalaczy zachowania związanego z systemem/przepływem pracy, natomiast tagi są zwykle dostępne dla użytkowników i mają znaczenie dla użytkowników eksperymentu.
run = experiment.start_logging()
run.tag('DeploymentCandidate')
run.tag('modifiedBy', 'Master CI')
run.tag('modifiedBy', 'release pipeline') # Careful, tags are mutable
run.add_properties({'BuildId': os.environ.get('VSTS_BUILD_ID')}) # Properties are not
tags = run.get_tags()
# tags = { 'DeploymentCandidate': None, 'modifiedBy': 'release pipeline' }
take_snapshot
Zapisz migawkę pliku lub folderu wejściowego.
take_snapshot(file_or_folder_path)
Parametry
Nazwa | Opis |
---|---|
file_or_folder_path
Wymagane
|
Plik lub folder zawierający kod źródłowy przebiegu. |
Zwraca
Typ | Opis |
---|---|
Zwraca identyfikator migawki. |
Uwagi
Migawki mają być kodem źródłowym używanym do wykonywania przebiegu eksperymentu. Są one przechowywane przy użyciu przebiegu, aby można było replikować wersję próbną w przyszłości.
Uwaga
Migawki są tworzone automatycznie po submit wywołaniu. Zazwyczaj ta metoda take_snapshot jest wymagana tylko w przypadku przebiegów interaktywnych (notesów).
upload_file
Przekaż plik do rekordu uruchamiania.
upload_file(name, path_or_stream, datastore_name=None)
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa pliku do przekazania. |
path_or_stream
Wymagane
|
Względna ścieżka lokalna lub strumień do pliku do przekazania. |
datastore_name
Wymagane
|
Opcjonalna nazwa magazynu danych |
Zwraca
Typ | Opis |
---|---|
Uwagi
run = experiment.start_logging()
run.upload_file(name='important_file', path_or_stream="path/on/disk/file.txt")
Uwaga
Uruchamia automatycznie przechwytywanie pliku w określonym katalogu wyjściowym, który domyślnie ma wartość "./outputs" dla większości typów uruchamiania. Użyj upload_file tylko wtedy, gdy dodatkowe pliki muszą zostać przekazane lub katalog wyjściowy nie zostanie określony.
upload_files
Przekaż pliki do rekordu uruchomienia.
upload_files(names, paths, return_artifacts=False, timeout_seconds=None, datastore_name=None)
Parametry
Nazwa | Opis |
---|---|
names
Wymagane
|
Nazwy plików do przekazania. W przypadku ustawienia należy również ustawić ścieżki. |
paths
Wymagane
|
Względne ścieżki lokalne do plików do przekazania. W przypadku ustawienia nazwy są wymagane. |
return_artifacts
Wymagane
|
Wskazuje, że dla każdego przekazanego pliku powinien zostać zwrócony obiekt artefaktu. |
timeout_seconds
Wymagane
|
Limit czasu przekazywania plików. |
datastore_name
Wymagane
|
Opcjonalna nazwa magazynu danych |
Uwagi
upload_files
ma taki sam wpływ jak upload_file
w przypadku oddzielnych plików, jednak w przypadku korzystania z usługi występują korzyści związane z upload_files
wydajnością i wykorzystaniem zasobów.
import os
run = experiment.start_logging()
file_name_1 = 'important_file_1'
file_name_2 = 'important_file_2'
run.upload_files(names=[file_name_1, file_name_2],
paths=['path/on/disk/file_1.txt', 'other/path/on/disk/file_2.txt'])
run.download_file(file_name_1, 'file_1.txt')
os.mkdir("path") # The path must exist
run.download_file(file_name_2, 'path/file_2.txt')
Uwaga
Uruchamia automatyczne przechwytywanie plików w określonym katalogu wyjściowym, który domyślnie ma wartość "./outputs" dla większości typów uruchamiania. Użyj upload_files tylko wtedy, gdy dodatkowe pliki muszą zostać przekazane lub nie określono katalogu wyjściowego.
upload_folder
Przekaż określony folder do podanej nazwy prefiksu.
upload_folder(name, path, datastore_name=None)
Parametry
Nazwa | Opis |
---|---|
name
Wymagane
|
Nazwa folderu plików do przekazania. |
folder
Wymagane
|
Względna ścieżka lokalna do folderu do przekazania. |
datastore_name
Wymagane
|
Opcjonalna nazwa magazynu danych |
Uwagi
run = experiment.start_logging()
run.upload_folder(name='important_files', path='path/on/disk')
run.download_file('important_files/existing_file.txt', 'local_file.txt')
Uwaga
Uruchamia automatyczne przechwytywanie plików w określonym katalogu wyjściowym, który domyślnie ma wartość "./outputs" dla większości typów uruchamiania. Użyj upload_folder tylko wtedy, gdy dodatkowe pliki muszą zostać przekazane lub nie określono katalogu wyjściowego.
wait_for_completion
Poczekaj na ukończenie tego przebiegu. Zwraca obiekt statusu po oczekiwaniu.
wait_for_completion(show_output=False, wait_post_processing=False, raise_on_error=True)
Parametry
Nazwa | Opis |
---|---|
show_output
|
Wskazuje, czy dane wyjściowe uruchomienia mają być wyświetlane w pliku sys.stdout. Domyślna wartość: False
|
wait_post_processing
|
Wskazuje, czy poczekać na zakończenie przetwarzania po zakończeniu przebiegu. Domyślna wartość: False
|
raise_on_error
|
Wskazuje, czy błąd jest zgłaszany, gdy przebieg jest w stanie niepowodzenia. Domyślna wartość: True
|
Zwraca
Typ | Opis |
---|---|
Obiekt stanu. |
Atrybuty
description
Zwróć opis przebiegu.
Opcjonalny opis przebiegu jest ciągiem określonym przez użytkownika przydatnym do opisywania przebiegu.
Zwraca
Typ | Opis |
---|---|
Opis przebiegu. |
display_name
Zwróć nazwę wyświetlaną przebiegu.
Opcjonalna nazwa wyświetlana przebiegu jest ciągiem określonym przez użytkownika przydatnym do późniejszej identyfikacji przebiegu.
Zwraca
Typ | Opis |
---|---|
Nazwa wyświetlana przebiegu. |
experiment
Pobierz eksperyment zawierający przebieg.
Zwraca
Typ | Opis |
---|---|
Pobiera eksperyment odpowiadający przebiegowi. |
id
Pobierz identyfikator uruchomienia.
Identyfikator przebiegu jest identyfikatorem unikatowym w całym zawierającym eksperymencie.
Zwraca
Typ | Opis |
---|---|
Identyfikator przebiegu. |
name
PRZESTARZAŁE. Użyj display_name.
Opcjonalna nazwa przebiegu jest ciągiem określonym przez użytkownika przydatnym do późniejszej identyfikacji przebiegu.
Zwraca
Typ | Opis |
---|---|
Identyfikator przebiegu. |
number
Pobierz numer uruchomienia.
Monotonicznie rosnąca liczba reprezentująca kolejność przebiegów w eksperymencie.
Zwraca
Typ | Opis |
---|---|
Numer przebiegu. |
parent
Pobierz uruchomienie nadrzędne dla tego przebiegu z usługi.
Uruchomienia mogą mieć opcjonalny element nadrzędny, co powoduje potencjalną hierarchię drzewa przebiegów. Aby zarejestrować metryki w uruchomieniu nadrzędnym, użyj log metody obiektu nadrzędnego, na przykład run.parent.log()
.
Zwraca
Typ | Opis |
---|---|
Uruchomienie nadrzędne lub Brak, jeśli go nie ustawiono. |
properties
Zwróć niezmienne właściwości tego przebiegu.
Zwraca
Typ | Opis |
---|---|
Lokalnie buforowane właściwości przebiegu. |
Uwagi
Właściwości obejmują niezmienne informacje generowane przez system, takie jak czas trwania, data wykonania, użytkownik itp.
status
Zwróć stan obiektu przebiegu.
tags
Zwróć zestaw tagów modyfikowalnych w tym przebiegu.
Zwraca
Typ | Opis |
---|---|
Tagi przechowywane w obiekcie run. |
type
Pobierz typ przebiegu.
Wskazuje sposób tworzenia lub konfigurowania przebiegu.
Zwraca
Typ | Opis |
---|---|
Typ przebiegu. |