series_fit_poly_fl()
Dotyczy: ✅Microsoft Fabric✅Azure Data Explorer
Funkcja series_fit_poly_fl()
jest funkcją zdefiniowaną przez użytkownika (UDF), która stosuje regresję wielomianową w serii. Ta funkcja przyjmuje tabelę zawierającą wiele serii (dynamicznych tablic liczbowych) i generuje najlepsze dopasowanie wielomianu o wysokiej kolejności dla każdej serii przy użyciu regresji wielomianowej. Ta funkcja zwraca zarówno współczynniki wielomianowe, jak i interpolowany wielomian nad zakresem serii.
Uwaga
- Użyj funkcji natywnej series_fit_poly() zamiast funkcji opisanej w tym dokumencie. Funkcja natywna zapewnia te same funkcje i jest lepsza pod kątem wydajności i skalowalności. Ten dokument jest udostępniany tylko do celów referencyjnych.
- W przypadku regresji liniowej serii równomiernie rozmieszczonej, utworzonej przez operator serii make, użyj funkcji natywnej series_fit_line().
Wymagania wstępne
- Wtyczka języka Python musi być włączona w klastrze. Jest to wymagane w przypadku wbudowanego języka Python używanego w funkcji.
- Wtyczka języka Python musi być włączona w bazie danych. Jest to wymagane w przypadku wbudowanego języka Python używanego w funkcji.
Składnia
T | invoke series_fit_poly_fl(
,
,
y_series y_fit_series stopień,
fit_coeff ,
[ x_series ],
[ x_istime ])
Dowiedz się więcej na temat konwencji składni.
Parametry
Nazwisko | Type | Wymagania | opis |
---|---|---|---|
y_series | string |
✔️ | Nazwa kolumny tabeli wejściowej zawierającej zmienną zależną. Oznacza to, że seria do dopasowania. |
y_fit_series | string |
✔️ | Nazwa kolumny do przechowywania najlepiej dopasowanej serii. |
fit_coeff | string |
✔️ | Nazwa kolumny do przechowywania najlepiej dopasowanych współczynników wielomianowych. |
stopień | int |
✔️ | Wymagana kolejność wielomianu do dopasowania. Na przykład 1 dla regresji liniowej, 2 dla regresji kwadratowej itd. |
x_series | string |
Nazwa kolumny zawierającej zmienną niezależną, czyli oś x lub time. Ten parametr jest opcjonalny i jest wymagany tylko w przypadku serii rozmieszczonych nierównomiernie. Wartość domyślna to pusty ciąg, ponieważ x jest nadmiarowy dla regresji równomiernie rozmieszczonej serii. | |
x_istime | bool |
Ten parametr jest wymagany tylko wtedy, gdy określono x_series i jest to wektor daty/godziny. |
Definicja funkcji
Funkcję można zdefiniować, osadzając jej kod jako funkcję zdefiniowaną przez zapytanie lub tworząc ją jako funkcję przechowywaną w bazie danych w następujący sposób:
Zdefiniuj funkcję przy użyciu następującej instrukcji let. Nie są wymagane żadne uprawnienia.
Ważne
Instrukcja let nie może działać samodzielnie. Należy po nim wykonać instrukcję wyrażenia tabelarycznego. Aby uruchomić działający przykład programu series_fit_poly_fl()
, zobacz Przykłady.
let series_fit_poly_fl=(tbl:(*), y_series:string, y_fit_series:string, fit_coeff:string, degree:int, x_series:string='', x_istime:bool=False)
{
let kwargs = bag_pack('y_series', y_series, 'y_fit_series', y_fit_series, 'fit_coeff', fit_coeff, 'degree', degree, 'x_series', x_series, 'x_istime', x_istime);
let code = ```if 1:
y_series = kargs["y_series"]
y_fit_series = kargs["y_fit_series"]
fit_coeff = kargs["fit_coeff"]
degree = kargs["degree"]
x_series = kargs["x_series"]
x_istime = kargs["x_istime"]
def fit(ts_row, x_col, y_col, deg):
y = ts_row[y_col]
if x_col == "": # If there is no x column creates sequential range [1, len(y)]
x = np.arange(len(y)) + 1
else: # if x column exists check whether its a time column. If so, normalize it to the [1, len(y)] range, else take it as is.
if x_istime:
x = pd.to_numeric(pd.to_datetime(ts_row[x_col]))
x = x - x.min()
x = x / x.max()
x = x * (len(x) - 1) + 1
else:
x = ts_row[x_col]
coeff = np.polyfit(x, y, deg)
p = np.poly1d(coeff)
z = p(x)
return z, coeff
result = df
if len(df):
result[[y_fit_series, fit_coeff]] = df.apply(fit, axis=1, args=(x_series, y_series, degree,), result_type="expand")
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
// Write your query to use the function here.
Przykłady
W poniższych przykładach użyto operatora invoke, aby uruchomić funkcję.
Dopasuj wielomian z piątej kolejności do szeregów czasowych regularnych
Aby użyć funkcji zdefiniowanej przez zapytanie, wywołaj ją po definicji funkcji osadzonej.
let series_fit_poly_fl=(tbl:(*), y_series:string, y_fit_series:string, fit_coeff:string, degree:int, x_series:string='', x_istime:bool=False)
{
let kwargs = bag_pack('y_series', y_series, 'y_fit_series', y_fit_series, 'fit_coeff', fit_coeff, 'degree', degree, 'x_series', x_series, 'x_istime', x_istime);
let code = ```if 1:
y_series = kargs["y_series"]
y_fit_series = kargs["y_fit_series"]
fit_coeff = kargs["fit_coeff"]
degree = kargs["degree"]
x_series = kargs["x_series"]
x_istime = kargs["x_istime"]
def fit(ts_row, x_col, y_col, deg):
y = ts_row[y_col]
if x_col == "": # If there is no x column creates sequential range [1, len(y)]
x = np.arange(len(y)) + 1
else: # if x column exists check whether its a time column. If so, normalize it to the [1, len(y)] range, else take it as is.
if x_istime:
x = pd.to_numeric(pd.to_datetime(ts_row[x_col]))
x = x - x.min()
x = x / x.max()
x = x * (len(x) - 1) + 1
else:
x = ts_row[x_col]
coeff = np.polyfit(x, y, deg)
p = np.poly1d(coeff)
z = p(x)
return z, coeff
result = df
if len(df):
result[[y_fit_series, fit_coeff]] = df.apply(fit, axis=1, args=(x_series, y_series, degree,), result_type="expand")
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
//
// Fit fifth order polynomial to a regular (evenly spaced) time series, created with make-series
//
let max_t = datetime(2016-09-03);
demo_make_series1
| make-series num=count() on TimeStamp from max_t-1d to max_t step 5m by OsVer
| extend fnum = dynamic(null), coeff=dynamic(null), fnum1 = dynamic(null), coeff1=dynamic(null)
| invoke series_fit_poly_fl('num', 'fnum', 'coeff', 5)
| render timechart with(ycolumns=num, fnum)
Wyjście
Testowanie nieregularnych szeregów czasowych
Aby użyć funkcji zdefiniowanej przez zapytanie, wywołaj ją po definicji funkcji osadzonej.
let series_fit_poly_fl=(tbl:(*), y_series:string, y_fit_series:string, fit_coeff:string, degree:int, x_series:string='', x_istime:bool=False)
{
let kwargs = bag_pack('y_series', y_series, 'y_fit_series', y_fit_series, 'fit_coeff', fit_coeff, 'degree', degree, 'x_series', x_series, 'x_istime', x_istime);
let code = ```if 1:
y_series = kargs["y_series"]
y_fit_series = kargs["y_fit_series"]
fit_coeff = kargs["fit_coeff"]
degree = kargs["degree"]
x_series = kargs["x_series"]
x_istime = kargs["x_istime"]
def fit(ts_row, x_col, y_col, deg):
y = ts_row[y_col]
if x_col == "": # If there is no x column creates sequential range [1, len(y)]
x = np.arange(len(y)) + 1
else: # if x column exists check whether its a time column. If so, normalize it to the [1, len(y)] range, else take it as is.
if x_istime:
x = pd.to_numeric(pd.to_datetime(ts_row[x_col]))
x = x - x.min()
x = x / x.max()
x = x * (len(x) - 1) + 1
else:
x = ts_row[x_col]
coeff = np.polyfit(x, y, deg)
p = np.poly1d(coeff)
z = p(x)
return z, coeff
result = df
if len(df):
result[[y_fit_series, fit_coeff]] = df.apply(fit, axis=1, args=(x_series, y_series, degree,), result_type="expand")
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
let max_t = datetime(2016-09-03);
demo_make_series1
| where TimeStamp between ((max_t-2d)..max_t)
| summarize num=count() by bin(TimeStamp, 5m), OsVer
| order by TimeStamp asc
| where hourofday(TimeStamp) % 6 != 0 // delete every 6th hour to create unevenly spaced time series
| summarize TimeStamp=make_list(TimeStamp), num=make_list(num) by OsVer
| extend fnum = dynamic(null), coeff=dynamic(null)
| invoke series_fit_poly_fl('num', 'fnum', 'coeff', 8, 'TimeStamp', True)
| render timechart with(ycolumns=num, fnum)
Wyjście
Piąty wielomian z szumem na osiach x i y
Aby użyć funkcji zdefiniowanej przez zapytanie, wywołaj ją po definicji funkcji osadzonej.
let series_fit_poly_fl=(tbl:(*), y_series:string, y_fit_series:string, fit_coeff:string, degree:int, x_series:string='', x_istime:bool=False)
{
let kwargs = bag_pack('y_series', y_series, 'y_fit_series', y_fit_series, 'fit_coeff', fit_coeff, 'degree', degree, 'x_series', x_series, 'x_istime', x_istime);
let code = ```if 1:
y_series = kargs["y_series"]
y_fit_series = kargs["y_fit_series"]
fit_coeff = kargs["fit_coeff"]
degree = kargs["degree"]
x_series = kargs["x_series"]
x_istime = kargs["x_istime"]
def fit(ts_row, x_col, y_col, deg):
y = ts_row[y_col]
if x_col == "": # If there is no x column creates sequential range [1, len(y)]
x = np.arange(len(y)) + 1
else: # if x column exists check whether its a time column. If so, normalize it to the [1, len(y)] range, else take it as is.
if x_istime:
x = pd.to_numeric(pd.to_datetime(ts_row[x_col]))
x = x - x.min()
x = x / x.max()
x = x * (len(x) - 1) + 1
else:
x = ts_row[x_col]
coeff = np.polyfit(x, y, deg)
p = np.poly1d(coeff)
z = p(x)
return z, coeff
result = df
if len(df):
result[[y_fit_series, fit_coeff]] = df.apply(fit, axis=1, args=(x_series, y_series, degree,), result_type="expand")
```;
tbl
| evaluate python(typeof(*), code, kwargs)
};
range x from 1 to 200 step 1
| project x = rand()*5 - 2.3
| extend y = pow(x, 5)-8*pow(x, 3)+10*x+6
| extend y = y + (rand() - 0.5)*0.5*y
| summarize x=make_list(x), y=make_list(y)
| extend y_fit = dynamic(null), coeff=dynamic(null)
| invoke series_fit_poly_fl('y', 'y_fit', 'coeff', 5, 'x')
|fork (project-away coeff) (project coeff | mv-expand coeff)
| render linechart
Wyjście