Udostępnij za pośrednictwem


LbfgsPoissonRegressionTrainer Klasa

Definicja

Element IEstimator<TTransformer> do trenowania modelu regresji Poissona.

public sealed class LbfgsPoissonRegressionTrainer : Microsoft.ML.Trainers.LbfgsTrainerBase<Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.PoissonRegressionModelParameters>,Microsoft.ML.Trainers.PoissonRegressionModelParameters>
type LbfgsPoissonRegressionTrainer = class
    inherit LbfgsTrainerBase<LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer<PoissonRegressionModelParameters>, PoissonRegressionModelParameters>
Public NotInheritable Class LbfgsPoissonRegressionTrainer
Inherits LbfgsTrainerBase(Of LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer(Of PoissonRegressionModelParameters), PoissonRegressionModelParameters)
Dziedziczenie

Uwagi

Aby utworzyć ten trener, użyj LbfgsPoissonRegression lub LbfgsPoissonRegression(Options).

Kolumny wejściowe i wyjściowe

Dane kolumny etykiety wejściowej muszą mieć wartość Single. Dane wejściowe funkcji kolumny muszą być znanym wektorem o rozmiarze Single.

Ten trener generuje następujące kolumny:

Nazwa kolumny wyjściowej Typ kolumny Opis
Score Single Niezawiązany wynik, który został przewidywany przez model.

Cechy trenera

Zadanie uczenia maszynowego Regresja
Czy normalizacja jest wymagana? Tak
Czy buforowanie jest wymagane? Nie
Wymagane narzędzie NuGet oprócz Microsoft.ML Brak
Eksportowanie do pliku ONNX Tak

Szczegóły algorytmu trenowania

Regresja Poissona to sparametryzowana metoda regresji. Przyjęto założenie, że dziennik średniej warunkowej zmiennej zależnej jest zgodny z funkcją liniową zmiennych zależnych. Zakładając, że zmienna zależna jest zgodna z rozkładem Poissona, parametry regresji można oszacować, maksymalizując prawdopodobieństwo uzyskanych obserwacji.

Zapoznaj się z sekcją Zobacz również, aby uzyskać linki do przykładów użycia.

Pola

FeatureColumn

Kolumna funkcji, której oczekuje trener.

(Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>)
LabelColumn

Kolumna etykiety, którą oczekuje trener. Może to być nullwartość , która wskazuje, że etykieta nie jest używana do trenowania.

(Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Kolumna wagi, którą oczekuje trener. Może to być null, co wskazuje, że waga nie jest używana do trenowania.

(Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>)

Właściwości

Info

Element IEstimator<TTransformer> do trenowania modelu regresji Poissona.

(Odziedziczone po LbfgsTrainerBase<TOptions,TTransformer,TModel>)

Metody

Fit(IDataView, LinearModelParameters)

Kontynuuje trenowanie LbfgsPoissonRegressionTrainer przy użyciu już wytrenowanego linearModel i zwraca wartość RegressionPredictionTransformer<TModel>.

Fit(IDataView)

Trenuje i zwraca wartość ITransformer.

(Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Element IEstimator<TTransformer> do trenowania modelu regresji Poissona.

(Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>)

Metody rozszerzania

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Dołącz punkt kontrolny buforowania do łańcucha narzędzia do szacowania. Zapewni to, że narzędzia do szacowania podrzędnego zostaną wytrenowane względem buforowanych danych. Warto mieć punkt kontrolny buforowania, zanim trenerzy przejmą wiele danych.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Biorąc pod uwagę narzędzie do szacowania, zwróć obiekt opakowujący, który wywoła delegata po Fit(IDataView) wywołaniu. Często ważne jest, aby narzędzie do szacowania zwracało informacje o tym, co było odpowiednie, dlatego Fit(IDataView) metoda zwraca specjalnie wpisany obiekt, a nie tylko ogólną ITransformerwartość . Jednak w tym samym czasie IEstimator<TTransformer> często są tworzone w potoki z wieloma obiektami, więc może być konieczne utworzenie łańcucha narzędzi do szacowania za pośrednictwem EstimatorChain<TLastTransformer> miejsca, w którym narzędzie do szacowania, dla którego chcemy uzyskać transformator jest pochowany gdzieś w tym łańcuchu. W tym scenariuszu możemy za pomocą tej metody dołączyć delegata, który zostanie wywołany po wywołaniu dopasowania.

Dotyczy

Zobacz też