LbfgsPoissonRegressionTrainer Klasa
Definicja
Ważne
Niektóre informacje odnoszą się do produktu w wersji wstępnej, który może zostać znacząco zmodyfikowany przed wydaniem. Firma Microsoft nie udziela żadnych gwarancji, jawnych lub domniemanych, w odniesieniu do informacji podanych w tym miejscu.
Element IEstimator<TTransformer> do trenowania modelu regresji Poissona.
public sealed class LbfgsPoissonRegressionTrainer : Microsoft.ML.Trainers.LbfgsTrainerBase<Microsoft.ML.Trainers.LbfgsPoissonRegressionTrainer.Options,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.PoissonRegressionModelParameters>,Microsoft.ML.Trainers.PoissonRegressionModelParameters>
type LbfgsPoissonRegressionTrainer = class
inherit LbfgsTrainerBase<LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer<PoissonRegressionModelParameters>, PoissonRegressionModelParameters>
Public NotInheritable Class LbfgsPoissonRegressionTrainer
Inherits LbfgsTrainerBase(Of LbfgsPoissonRegressionTrainer.Options, RegressionPredictionTransformer(Of PoissonRegressionModelParameters), PoissonRegressionModelParameters)
- Dziedziczenie
Uwagi
Aby utworzyć ten trener, użyj LbfgsPoissonRegression lub LbfgsPoissonRegression(Options).
Kolumny wejściowe i wyjściowe
Dane kolumny etykiety wejściowej muszą mieć wartość Single. Dane wejściowe funkcji kolumny muszą być znanym wektorem o rozmiarze Single.
Ten trener generuje następujące kolumny:
Nazwa kolumny wyjściowej | Typ kolumny | Opis |
---|---|---|
Score |
Single | Niezawiązany wynik, który został przewidywany przez model. |
Cechy trenera
Zadanie uczenia maszynowego | Regresja |
Czy normalizacja jest wymagana? | Tak |
Czy buforowanie jest wymagane? | Nie |
Wymagane narzędzie NuGet oprócz Microsoft.ML | Brak |
Eksportowanie do pliku ONNX | Tak |
Szczegóły algorytmu trenowania
Regresja Poissona to sparametryzowana metoda regresji. Przyjęto założenie, że dziennik średniej warunkowej zmiennej zależnej jest zgodny z funkcją liniową zmiennych zależnych. Zakładając, że zmienna zależna jest zgodna z rozkładem Poissona, parametry regresji można oszacować, maksymalizując prawdopodobieństwo uzyskanych obserwacji.
Zapoznaj się z sekcją Zobacz również, aby uzyskać linki do przykładów użycia.
Pola
FeatureColumn |
Kolumna funkcji, której oczekuje trener. (Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
Kolumna etykiety, którą oczekuje trener. Może to być |
WeightColumn |
Kolumna wagi, którą oczekuje trener. Może to być |
Właściwości
Info |
Element IEstimator<TTransformer> do trenowania modelu regresji Poissona. (Odziedziczone po LbfgsTrainerBase<TOptions,TTransformer,TModel>) |
Metody
Fit(IDataView, LinearModelParameters) |
Kontynuuje trenowanie LbfgsPoissonRegressionTrainer przy użyciu już wytrenowanego |
Fit(IDataView) |
Trenuje i zwraca wartość ITransformer. (Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Element IEstimator<TTransformer> do trenowania modelu regresji Poissona. (Odziedziczone po TrainerEstimatorBase<TTransformer,TModel>) |
Metody rozszerzania
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Dołącz punkt kontrolny buforowania do łańcucha narzędzia do szacowania. Zapewni to, że narzędzia do szacowania podrzędnego zostaną wytrenowane względem buforowanych danych. Warto mieć punkt kontrolny buforowania, zanim trenerzy przejmą wiele danych. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Biorąc pod uwagę narzędzie do szacowania, zwróć obiekt opakowujący, który wywoła delegata po Fit(IDataView) wywołaniu. Często ważne jest, aby narzędzie do szacowania zwracało informacje o tym, co było odpowiednie, dlatego Fit(IDataView) metoda zwraca specjalnie wpisany obiekt, a nie tylko ogólną ITransformerwartość . Jednak w tym samym czasie IEstimator<TTransformer> często są tworzone w potoki z wieloma obiektami, więc może być konieczne utworzenie łańcucha narzędzi do szacowania za pośrednictwem EstimatorChain<TLastTransformer> miejsca, w którym narzędzie do szacowania, dla którego chcemy uzyskać transformator jest pochowany gdzieś w tym łańcuchu. W tym scenariuszu możemy za pomocą tej metody dołączyć delegata, który zostanie wywołany po wywołaniu dopasowania. |