Delen via


Voorbeelden van modeltraining

Deze sectie bevat voorbeelden van het trainen van machine learning-modellen in Azure Databricks met behulp van veel populaire opensource-bibliotheken.

U kunt ook AutoML-gebruiken, waarmee automatisch een gegevensset wordt voorbereid voor modeltraining, een reeks proefversies wordt uitgevoerd met behulp van opensource-bibliotheken, zoals scikit-learn en XGBoost, en een Python-notebook wordt gemaakt met de broncode voor elke proefuitvoering, zodat u de code kunt bekijken, reproduceren en wijzigen.

Voorbeelden van machine learning

Pakket Notebook(s) Functies
scikit-learn Zelfstudie over machine learning Unity Catalog, classificatiemodel, MLflow, geautomatiseerde afstemming van hyperparameters met Hyperopt en MLflow
scikit-learn End-to-end-voorbeeld Unity Catalog, classificatiemodel, MLflow, geautomatiseerde afstemming van hyperparameters met Hyperopt en MLflow, XGBoost
MLlib Voorbeelden van MLlib Binaire classificatie, beslissingsstructuren, GBT-regressie, Gestructureerd streamen, aangepaste transformator
xgboost XGBoost-voorbeelden Python, PySpark en Scala, workloads met één knooppunt en gedistribueerde training

Voorbeelden van hyperparameterafstemming

Zie Hyperparameter-afstemming voor algemene informatie over het afstemmen van hyperparameters in Azure Databricks.

Pakket Notebook Functies
Optuna Aan de slag met Optuna Optuna, gedistribueerde Optuna, scikit-learn, MLflow
Hyperopt Gedistribueerde hyperopt Gedistribueerde hyperopt, scikit-learn, MLflow
Hyperopt Modellen vergelijken Gedistribueerde hyperopt gebruiken om hyperparameterruimte voor verschillende modeltypen tegelijk te doorzoeken
Hyperopt Gedistribueerde trainingsalgoritmen en hyperopt Hyperopt, MLlib
Hyperopt Best practices voor Hyperopt Aanbevolen procedures voor gegevenssets met verschillende grootten