사용자 지정 텍스트 분류 사용을 시작하기 전에 Azure AI 언어 리소스가 필요합니다. Azure Portal에서 언어 리소스를 만들고 스토리지 계정을 연결하는 것이 좋습니다. Azure Portal에서 리소스를 만들면 필요한 모든 권한이 미리 구성된 Azure Storage 계정을 동시에 만들 수 있습니다. 또한 이 문서에서 기존 리소스를 사용하고 사용자 지정 텍스트 분류와 함께 작동하도록 구성하는 방법을 자세히 읽을 수 있습니다.
또한 텍스트를 분류하도록 모델을 학습시키는 데 사용할 .txt 문서를 업로드할 Azure Storage 계정이 필요합니다.
참고 항목
언어 리소스를 만들려면 리소스 그룹에 할당된 소유자 역할이 있어야 합니다.
기존 스토리지 계정을 연결하는 경우 소유자 역할이 할당되어야 합니다.
언어 리소스 만들기 및 스토리지 계정 연결
참고 항목
언어 리소스와 연결된 후에는 스토리지 계정을 다른 리소스 그룹이나 구독으로 이동하면 안 됩니다.
지원되는 가격 책정 계층 중 하나입니다. 무료(F0) 계층을 사용하여 서비스를 사용해 볼 수 있습니다.
"로그인 계정이 선택한 스토리지 계정의 리소스 그룹 소유자가 아닙니다"라는 메시지가 표시되면 언어 리소스를 만들기 전에 계정에 리소스 그룹에 대한 소유자 역할이 할당되어 있어야 합니다. 도움이 필요하면 Azure 구독 소유자에게 문의합니다.
리소스 그룹을 검색하고 연결된 구독에 대한 링크에 따라 Azure 구독 소유자를 확인할 수 있습니다. 다음 작업:
액세스 제어(IAM) 탭 선택
역할 할당 선택
역할:소유자로 필터링합니다.
사용자 지정 텍스트 분류 및 사용자 지정 명명된 엔터티 인식 섹션에서 기존 스토리지 계정을 선택하거나 새 스토리지 계정을 선택합니다. 이러한 값은 시작하는 데 도움이 되며, 반드시 프로덕션 환경에서 사용하려는 스토리지 계정 값은 아닙니다. 프로젝트를 빌드하는 동안 대기 시간을 방지하려면 언어 리소스와 동일한 지역의 스토리지 계정에 연결합니다.
스토리지 계정 값
권장 값
스토리지 계정 이름
임의의 이름
Storage 계정 유형
표준 LRS
책임 있는 AI 알림이 선택되어 있는지 확인합니다. 페이지 아래쪽에서 검토 + 만들기를 선택합니다.
Language Studio에서 새 언어 리소스 만들기
처음 로그인하는 경우 Language Studio에서 기존 언어 리소스를 선택하거나 새로 만들 수 있는 창이 표시됩니다. 오른쪽 위 모서리에서 설정 아이콘을 클릭하고, 리소스를 선택한 다음, 새 리소스 만들기를 클릭하여 리소스를 만들 수도 있습니다.
사용자 지정 텍스트 분류를 사용하려면 리소스를 스토리지 계정에 연결해야 합니다. 계정이 없는 경우 Azure 스토리지 계정을 만들 수 있습니다. 다음 단계를 사용하여 첫 번째 프로젝트를 만들고 스토리지 계정을 연결합니다.
Language Studio에 로그인합니다. 구독 및 언어 리소스를 선택할 수 있는 창이 표시됩니다. 언어 리소스를 선택합니다.
Language Studio의 텍스트 분류 섹션 아래에서 사용자 지정 텍스트 분류를 선택합니다.
프로젝트 페이지의 상단 메뉴에서 새 프로젝트 만들기를 선택합니다. 프로젝트를 만들면 레이블을 데이터에 지정하고, 모델을 학습시키고, 평가하고, 향상시키고, 배포할 수 있습니다.
새 프로젝트 만들기를 클릭하면 스토리지 계정을 연결할 수 있는 창이 나타납니다. 스토리지 계정을 이미 연결한 경우 연결된 스토리지 계정이 표시됩니다. 그렇지 않은 경우 표시되는 드롭다운에서 스토리지 계정을 선택하고 스토리지 계정 연결을 선택합니다. 그러면 스토리지 계정에 필요한 역할이 설정됩니다. 스토리지 계정에 대한 소유자로 할당되지 않은 경우 이 단계에서 오류가 반환될 수 있습니다.
참고 항목
사용하는 각 새 언어 리소스에 대해 이 단계를 한 번만 수행하면 됩니다.
이 프로세스는 되돌릴 수 없으며, 스토리지 계정을 언어 리소스에 연결하면 나중에 해당 연결을 끊을 수 없습니다.
언어 리소스는 하나의 스토리지 계정에만 연결할 수 있습니다.
프로젝트 형식을 선택합니다. 각 문서가 하나 이상의 클래스에 속할 수 있는 다중 레이블 분류 프로젝트를 만들거나, 각 문서가 하나의 클래스에만 속할 수 있는 단일 레이블 분류 프로젝트를 만들 수 있습니다. 선택한 형식은 나중에 변경할 수 없습니다. 프로젝트 형식에 대한 자세한 정보
프로젝트에 있는 문서의 이름, 설명 및 언어를 포함한 프로젝트 정보를 입력합니다. 예제 데이터 세트를 사용하는 경우 영어를 선택합니다. 프로젝트 이름은 나중에 변경할 수 없습니다. 다음을 선택합니다.
팁
데이터 세트는 완전히 동일한 언어로 되어 있지 않아도 됩니다. 지원되는 언어가 서로 다른 여러 문서가 있을 수 있습니다. 데이터 세트에 다른 언어의 문서가 포함되어 있거나 런타임 중에 다른 언어의 텍스트가 필요한 경우 프로젝트에 대한 기본 정보를 입력할 때 다국어 데이터 세트 사용 옵션을 선택합니다. 이 옵션은 나중에 프로젝트 설정 페이지에서 사용하도록 설정할 수 있습니다.
데이터 세트를 업로드한 컨테이너를 선택합니다.
참고 항목
이미 레이블을 데이터에 지정한 경우 지원되는 형식을 따르는지 확인하고, 예, 이미 레이블을 내 문서에 지정하고 JSON 레이블 파일의 형식을 지정했습니다를 선택하고, 아래의 드롭다운 메뉴에서 레이블 파일을 선택합니다.
예제 데이터 세트 중 하나를 사용하는 경우 포함된 webOfScience_labelsFile 또는 movieLabels json 파일을 사용합니다. 그런 후 다음을 선택합니다.
입력한 데이터를 검토하고, 프로젝트 만들기를 선택합니다.
GitHub에서 호스트되는 다음 CLI 템플릿 및 매개 변수 파일을 사용하여 새 리소스와 스토리지 계정을 만들 수 있습니다.
추가를 선택하여 역할 할당 추가를 선택하고, 스토리지 계정에 대한 Storage Blob 데이터 기여자 역할을 선택합니다.
다음에 대한 액세스 권한 할당 내에서 관리 ID를 선택합니다.
멤버 선택을 선택합니다.
구독을 선택하고, 관리 ID로 언어를 선택합니다. 선택 필드에서 사용자 이름을 검색할 수 있습니다.
Important
가상 네트워크 또는 프라이빗 엔드포인트가 있는 경우 Azure Portal에서 신뢰할 수 있는 서비스 목록에서 Azure 서비스가 이 스토리지 계정에 액세스하도록 허용을 선택해야 합니다.
스토리지 계정에 대해 CORS 활성화
CORS(원본 간 리소스 공유)를 활성화할 때 (GET, PUT, DELETE) 메서드를 허용해야 합니다.
허용된 원본 필드를 https://language.cognitive.azure.com으로 설정합니다. *를 허용된 헤더 값에 추가하여 모든 헤더를 허용하고, 최대 기간을 500으로 설정합니다.
사용자 지정 텍스트 분류 프로젝트 만들기
리소스 및 스토리지 컨테이너가 구성되면 새 사용자 지정 텍스트 분류 프로젝트를 만듭니다. 프로젝트는 데이터를 기반으로 하는 사용자 지정 AI 모델을 빌드하기 위한 작업 영역입니다. 사용자 및 사용 중인 Azure 리소스에 대해 액세스 권한이 있는 다른 사용자만 프로젝트에 액세스할 수 있습니다. 레이블을 데이터에 지정한 경우 이를 가져와서 시작할 수 있습니다.
Language Studio에 로그인합니다. 구독 및 언어 리소스를 선택할 수 있는 창이 표시됩니다. 언어 리소스를 선택합니다.
Language Studio의 텍스트 분류 섹션 아래에서 사용자 지정 텍스트 분류를 선택합니다.
프로젝트 페이지의 상단 메뉴에서 새 프로젝트 만들기를 선택합니다. 프로젝트를 만들면 레이블을 데이터에 지정하고, 모델을 학습시키고, 평가하고, 향상시키고, 배포할 수 있습니다.
새 프로젝트 만들기를 클릭하면 스토리지 계정을 연결할 수 있는 창이 나타납니다. 스토리지 계정을 이미 연결한 경우 연결된 스토리지 계정이 표시됩니다. 그렇지 않은 경우 표시되는 드롭다운에서 스토리지 계정을 선택하고 스토리지 계정 연결을 선택합니다. 그러면 스토리지 계정에 필요한 역할이 설정됩니다. 스토리지 계정에 대한 소유자로 할당되지 않은 경우 이 단계에서 오류가 반환될 수 있습니다.
참고 항목
사용하는 각 새 언어 리소스에 대해 이 단계를 한 번만 수행하면 됩니다.
이 프로세스는 되돌릴 수 없으며, 스토리지 계정을 언어 리소스에 연결하면 나중에 해당 연결을 끊을 수 없습니다.
언어 리소스는 하나의 스토리지 계정에만 연결할 수 있습니다.
프로젝트 형식을 선택합니다. 각 문서가 하나 이상의 클래스에 속할 수 있는 다중 레이블 분류 프로젝트를 만들거나, 각 문서가 하나의 클래스에만 속할 수 있는 단일 레이블 분류 프로젝트를 만들 수 있습니다. 선택한 형식은 나중에 변경할 수 없습니다. 프로젝트 형식에 대한 자세한 정보
프로젝트에 있는 문서의 이름, 설명 및 언어를 포함한 프로젝트 정보를 입력합니다. 예제 데이터 세트를 사용하는 경우 영어를 선택합니다. 프로젝트 이름은 나중에 변경할 수 없습니다. 다음을 선택합니다.
팁
데이터 세트는 완전히 동일한 언어로 되어 있지 않아도 됩니다. 지원되는 언어가 서로 다른 여러 문서가 있을 수 있습니다. 데이터 세트에 다른 언어의 문서가 포함되어 있거나 런타임 중에 다른 언어의 텍스트가 필요한 경우 프로젝트에 대한 기본 정보를 입력할 때 다국어 데이터 세트 사용 옵션을 선택합니다. 이 옵션은 나중에 프로젝트 설정 페이지에서 사용하도록 설정할 수 있습니다.
데이터 세트를 업로드한 컨테이너를 선택합니다.
참고 항목
이미 레이블을 데이터에 지정한 경우 지원되는 형식을 따르는지 확인하고, 예, 이미 레이블을 내 문서에 지정하고 JSON 레이블 파일의 형식을 지정했습니다를 선택하고, 아래의 드롭다운 메뉴에서 레이블 파일을 선택합니다.
예제 데이터 세트 중 하나를 사용하는 경우 포함된 webOfScience_labelsFile 또는 movieLabels json 파일을 사용합니다. 그런 후 다음을 선택합니다.
입력한 데이터를 검토하고, 프로젝트 만들기를 선택합니다.
사용자 지정 텍스트 분류 모델 만들기를 시작하려면 프로젝트를 만들어야 합니다. 프로젝트를 만들면 레이블을 데이터에 지정하고, 모델을 학습시키고, 평가하고, 향상시키고, 배포할 수 있습니다.
참고 항목
프로젝트 이름은 모든 작업에서 대/소문자를 구분합니다.
다음 URL, 헤더 및 JSON 본문을 사용하여 PATCH 요청을 만들어 프로젝트를 만듭니다.
요청 URL
다음 URL을 사용하여 프로젝트를 만듭니다. 아래의 자리 표시자 값을 자신의 값으로 바꿉니다.
Language Studio에 로그인합니다. 구독 및 언어 리소스를 선택할 수 있는 창이 표시됩니다. 언어 리소스를 선택합니다.
Language Studio의 텍스트 분류 섹션 아래에서 사용자 지정 텍스트 분류를 선택합니다.
프로젝트 페이지의 상단 메뉴에서 새 프로젝트 만들기를 선택합니다. 프로젝트를 만들면 레이블을 데이터에 지정하고, 모델을 학습시키고, 평가하고, 향상시키고, 배포할 수 있습니다.
새 프로젝트 만들기를 선택하면 스토리지 계정을 연결할 수 있는 화면이 표시됩니다. 스토리지 계정을 찾을 수 없는 경우 권장 단계를 사용하여 리소스를 만들었는지 확인합니다. 스토리지 계정을 언어 리소스에 이미 연결한 경우 연결된 스토리지 계정이 표시됩니다.
참고 항목
사용하는 각 새 언어 리소스에 대해 이 단계를 한 번만 수행하면 됩니다.
이 프로세스는 되돌릴 수 없으며, 스토리지 계정을 언어 리소스에 연결하면 나중에 해당 연결을 끊을 수 없습니다.
언어 리소스는 하나의 스토리지 계정에만 연결할 수 있습니다.
프로젝트 형식을 선택합니다. 각 문서가 하나 이상의 클래스에 속할 수 있는 다중 레이블 분류 프로젝트를 만들거나, 각 문서가 하나의 클래스에만 속할 수 있는 단일 레이블 분류 프로젝트를 만들 수 있습니다. 선택한 형식은 나중에 변경할 수 없습니다.
프로젝트에 있는 문서의 이름, 설명 및 언어를 포함한 프로젝트 정보를 입력합니다. 프로젝트 이름은 나중에 변경할 수 없습니다. 다음을 선택합니다.
팁
데이터 세트는 완전히 동일한 언어로 되어 있지 않아도 됩니다. 지원되는 언어가 서로 다른 여러 문서가 있을 수 있습니다. 데이터 세트에 다른 언어의 문서가 포함되어 있거나 런타임 중에 다른 언어의 텍스트가 필요한 경우 프로젝트에 대한 기본 정보를 입력할 때 다국어 데이터 세트 사용 옵션을 선택합니다. 이 옵션은 나중에 프로젝트 설정 페이지에서 사용하도록 설정할 수 있습니다.
데이터 세트를 업로드한 컨테이너를 선택합니다.
예, 내 문서에 이미 레이블이 지정되어 있고 JSON 레이블 파일의 형식이 지정되었습니다.를 선택하고 아래 드롭다운 메뉴에서 레이블 파일을 선택하여 JSON 레이블 파일을 가져옵니다. 지원되는 형식을 따르는지 확인합니다.
다음을 선택합니다.
입력한 데이터를 검토하고, 프로젝트 만들기를 선택합니다.
다음 URL, 헤더 및 JSON 본문을 사용하여 레이블 파일을 가져오는 POST 요청을 제출합니다. 레이블 파일이 허용되는 형식을 따르는지 확인합니다.