TimeSeriesCatalog.DetectIidChangePoint メソッド
定義
重要
一部の情報は、リリース前に大きく変更される可能性があるプレリリースされた製品に関するものです。 Microsoft は、ここに記載されている情報について、明示または黙示を問わず、一切保証しません。
オーバーロード
DetectIidChangePoint(TransformsCatalog, String, String, Double, Int32, MartingaleType, Double) |
Create IidChangePointEstimator。アダプティブ カーネル密度推定とマルチンゲール スコアに基づいて 、独立した同一分布 (i.i.d.) 時系列の変化点を予測します。 |
DetectIidChangePoint(TransformsCatalog, String, String, Int32, Int32, MartingaleType, Double) |
古い.
Create IidChangePointEstimator。アダプティブ カーネル密度推定とマルチンゲール スコアに基づいて 、独立した同一分布 (i.i.d.) 時系列の変化点を予測します。 |
DetectIidChangePoint(TransformsCatalog, String, String, Double, Int32, MartingaleType, Double)
Create IidChangePointEstimator。アダプティブ カーネル密度推定とマルチンゲール スコアに基づいて 、独立した同一分布 (i.i.d.) 時系列の変化点を予測します。
public static Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator DetectIidChangePoint (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int changeHistoryLength, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
static member DetectIidChangePoint : Microsoft.ML.TransformsCatalog * string * string * double * int * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator
<Extension()>
Public Function DetectIidChangePoint (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, changeHistoryLength As Integer, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As IidChangePointEstimator
パラメーター
- catalog
- TransformsCatalog
変換のカタログ。
- outputColumnName
- String
の変換の結果として得られる列の inputColumnName
名前。
列データは次のベクトルです Double。 ベクトルには、アラート (ゼロ以外の値は変更ポイントを意味します)、生スコア、p 値、およびマルチンゲール スコアの 4 つの要素が含まれています。
- inputColumnName
- String
変換する列の名前。 列データは次の値にする Single必要があります。 に null
設定すると、その値が outputColumnName
ソースとして使用されます。
- confidence
- Double
[0, 100] の範囲での変化点検出の信頼度。
- changeHistoryLength
- Int32
マルチンゲール スコアを計算するための p 値のスライディング ウィンドウの長さ。
- martingale
- MartingaleType
スコアリングに使用されるマルチンゲール。
- eps
- Double
Power martingale の epsilon パラメーター。
戻り値
例
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectIidChangePointBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify points where data distribution changed.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a change
const int Size = 16;
var data = new List<TimeSeriesData>(Size)
{
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
//Change point data.
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup estimator arguments
string outputColumnName = nameof(ChangePointPrediction.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// The transformed data.
var transformedData = ml.Transforms.DetectIidChangePoint(
outputColumnName, inputColumnName, 95.0d, Size / 4).Fit(dataView)
.Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// ChangePointPrediction.
var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine($"{outputColumnName} column obtained " +
$"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value Martingale value
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 7 1 7.00 0.00 10298.67 <-- alert is on, predicted changepoint
// 7 0 7.00 0.13 33950.16
// 7 0 7.00 0.26 60866.34
// 7 0 7.00 0.38 78362.04
// 7 0 7.00 0.50 0.01
// 7 0 7.00 0.50 0.00
// 7 0 7.00 0.50 0.00
// 7 0 7.00 0.50 0.00
}
private static void PrintPrediction(float value, ChangePointPrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2], prediction.Prediction[3]);
class ChangePointPrediction
{
[VectorType(4)]
public double[] Prediction { get; set; }
}
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
}
}
適用対象
DetectIidChangePoint(TransformsCatalog, String, String, Int32, Int32, MartingaleType, Double)
注意事項
This API method is deprecated, please use the overload with confidence parameter of type double.
Create IidChangePointEstimator。アダプティブ カーネル密度推定とマルチンゲール スコアに基づいて 、独立した同一分布 (i.i.d.) 時系列の変化点を予測します。
[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator DetectIidChangePoint (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
public static Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator DetectIidChangePoint (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectIidChangePoint : Microsoft.ML.TransformsCatalog * string * string * int * int * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator
static member DetectIidChangePoint : Microsoft.ML.TransformsCatalog * string * string * int * int * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.IidChangePointEstimator
<Extension()>
Public Function DetectIidChangePoint (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, changeHistoryLength As Integer, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As IidChangePointEstimator
パラメーター
- catalog
- TransformsCatalog
変換のカタログ。
- outputColumnName
- String
の変換の結果として得られる列の inputColumnName
名前。
列データは次のベクトルです Double。 ベクトルには、アラート (ゼロ以外の値は変更ポイントを意味します)、生スコア、p 値、およびマルチンゲール スコアの 4 つの要素が含まれています。
- inputColumnName
- String
変換する列の名前。 列データは次の値にする Single必要があります。 に null
設定すると、その値が outputColumnName
ソースとして使用されます。
- confidence
- Int32
[0, 100] の範囲での変化点検出の信頼度。
- changeHistoryLength
- Int32
マルチンゲール スコアを計算するための p 値のスライディング ウィンドウの長さ。
- martingale
- MartingaleType
スコアリングに使用されるマルチンゲール。
- eps
- Double
Power martingale の epsilon パラメーター。
戻り値
- 属性
例
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectIidChangePointBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify points where data distribution changed.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a change
const int Size = 16;
var data = new List<TimeSeriesData>(Size)
{
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
new TimeSeriesData(5),
//Change point data.
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
new TimeSeriesData(7),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup estimator arguments
string outputColumnName = nameof(ChangePointPrediction.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// The transformed data.
var transformedData = ml.Transforms.DetectIidChangePoint(
outputColumnName, inputColumnName, 95.0d, Size / 4).Fit(dataView)
.Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// ChangePointPrediction.
var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine($"{outputColumnName} column obtained " +
$"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value Martingale value
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 5 0 5.00 0.50 0.00
// 7 1 7.00 0.00 10298.67 <-- alert is on, predicted changepoint
// 7 0 7.00 0.13 33950.16
// 7 0 7.00 0.26 60866.34
// 7 0 7.00 0.38 78362.04
// 7 0 7.00 0.50 0.01
// 7 0 7.00 0.50 0.00
// 7 0 7.00 0.50 0.00
// 7 0 7.00 0.50 0.00
}
private static void PrintPrediction(float value, ChangePointPrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2], prediction.Prediction[3]);
class ChangePointPrediction
{
[VectorType(4)]
public double[] Prediction { get; set; }
}
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
}
}