次の方法で共有


AnomalyDetectorClient.TrainMultivariateModelAsync メソッド

定義

オーバーロード

TrainMultivariateModelAsync(ModelInfo, CancellationToken)

多変量異常検出モデルをトレーニングする。

TrainMultivariateModelAsync(RequestContent, RequestContext)

[プロトコルメソッド]多変量異常検出モデルをトレーニングする

TrainMultivariateModelAsync(ModelInfo, CancellationToken)

Source:
AnomalyDetectorClient.cs

多変量異常検出モデルをトレーニングする。

public virtual System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.AnomalyDetectionModel>> TrainMultivariateModelAsync (Azure.AI.AnomalyDetector.ModelInfo modelInfo, System.Threading.CancellationToken cancellationToken = default);
abstract member TrainMultivariateModelAsync : Azure.AI.AnomalyDetector.ModelInfo * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.AnomalyDetectionModel>>
override this.TrainMultivariateModelAsync : Azure.AI.AnomalyDetector.ModelInfo * System.Threading.CancellationToken -> System.Threading.Tasks.Task<Azure.Response<Azure.AI.AnomalyDetector.AnomalyDetectionModel>>
Public Overridable Function TrainMultivariateModelAsync (modelInfo As ModelInfo, Optional cancellationToken As CancellationToken = Nothing) As Task(Of Response(Of AnomalyDetectionModel))

パラメーター

modelInfo
ModelInfo

モデル情報。

cancellationToken
CancellationToken

使用する取り消しトークン。

戻り値

例外

modelInfo が null です。

このサンプルでは、必要なパラメーターを使用して TrainMultivariateModelAsync を呼び出す方法を示します。

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var modelInfo = new ModelInfo("<dataSource>", DateTimeOffset.UtcNow, DateTimeOffset.UtcNow)
{
    DataSchema = DataSchema.OneTable,
    DisplayName = "<DisplayName>",
    SlidingWindow = 1234,
    AlignPolicy = new AlignPolicy()
{
        AlignMode = AlignMode.Inner,
        FillNAMethod = FillNAMethod.Previous,
        PaddingValue = 3.14f,
    },
};
var result = await client.TrainMultivariateModelAsync(modelInfo);

注釈

多変量異常検出モデルを作成してトレーニングします。 要求には、サービスからアクセスできるAzure Blob Storage URI を示すソース パラメーターを含める必要があります。 データ入力には 2 種類あります。 Blob Storage URI は、複数の CSV ファイルを含むAzure Blob Storage フォルダーを指すことができます。各 CSV ファイルには、タイム スタンプと変数という 2 つの列があります。 または、Blob Storage URI は、すべての変数とタイム スタンプ列を含む CSV ファイルを含む 1 つの BLOB を指すことができます。

適用対象

TrainMultivariateModelAsync(RequestContent, RequestContext)

Source:
AnomalyDetectorClient.cs

[プロトコルメソッド]多変量異常検出モデルをトレーニングする

public virtual System.Threading.Tasks.Task<Azure.Response> TrainMultivariateModelAsync (Azure.Core.RequestContent content, Azure.RequestContext context = default);
abstract member TrainMultivariateModelAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
override this.TrainMultivariateModelAsync : Azure.Core.RequestContent * Azure.RequestContext -> System.Threading.Tasks.Task<Azure.Response>
Public Overridable Function TrainMultivariateModelAsync (content As RequestContent, Optional context As RequestContext = Nothing) As Task(Of Response)

パラメーター

content
RequestContent

要求の本文として送信するコンテンツ。

context
RequestContext

要求コンテキスト。これは、クライアント パイプラインの既定の動作を呼び出しごとにオーバーライドできます。

戻り値

サービスから返された応答。

例外

content が null です。

サービスから成功以外の状態コードが返されました。

このサンプルでは、必要な要求コンテンツを使用して TrainMultivariateModelAsync を呼び出す方法と、結果を解析する方法を示します。

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var data = new {
    dataSource = "<dataSource>",
    startTime = "2022-05-10T14:57:31.2311892-04:00",
    endTime = "2022-05-10T14:57:31.2311892-04:00",
};

Response response = await client.TrainMultivariateModelAsync(RequestContent.Create(data));

JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("modelId").ToString());
Console.WriteLine(result.GetProperty("createdTime").ToString());
Console.WriteLine(result.GetProperty("lastUpdatedTime").ToString());

このサンプルでは、すべての要求コンテンツで TrainMultivariateModelAsync を呼び出す方法と、結果を解析する方法を示します。

var credential = new AzureKeyCredential("<key>");
var endpoint = new Uri("<https://my-service.azure.com>");
var client = new AnomalyDetectorClient(endpoint, credential);

var data = new {
    dataSource = "<dataSource>",
    dataSchema = "OneTable",
    startTime = "2022-05-10T14:57:31.2311892-04:00",
    endTime = "2022-05-10T14:57:31.2311892-04:00",
    displayName = "<displayName>",
    slidingWindow = 1234,
    alignPolicy = new {
        alignMode = "Inner",
        fillNAMethod = "Previous",
        paddingValue = 123.45f,
    },
};

Response response = await client.TrainMultivariateModelAsync(RequestContent.Create(data), new RequestContext());

JsonElement result = JsonDocument.Parse(response.ContentStream).RootElement;
Console.WriteLine(result.GetProperty("modelId").ToString());
Console.WriteLine(result.GetProperty("createdTime").ToString());
Console.WriteLine(result.GetProperty("lastUpdatedTime").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("dataSource").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("dataSchema").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("startTime").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("endTime").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("displayName").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("slidingWindow").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("alignPolicy").GetProperty("alignMode").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("alignPolicy").GetProperty("fillNAMethod").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("alignPolicy").GetProperty("paddingValue").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("status").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("errors")[0].GetProperty("code").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("errors")[0].GetProperty("message").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("modelState").GetProperty("epochIds")[0].ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("modelState").GetProperty("trainLosses")[0].ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("modelState").GetProperty("validationLosses")[0].ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("modelState").GetProperty("latenciesInSeconds")[0].ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("variableStates")[0].GetProperty("variable").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("variableStates")[0].GetProperty("filledNARatio").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("variableStates")[0].GetProperty("effectiveCount").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("variableStates")[0].GetProperty("firstTimestamp").ToString());
Console.WriteLine(result.GetProperty("modelInfo").GetProperty("diagnosticsInfo").GetProperty("variableStates")[0].GetProperty("lastTimestamp").ToString());

注釈

多変量異常検出モデルを作成してトレーニングします。 要求には、外部からアクセス可能な Azure BLOB ストレージ URI を示すソース パラメーターを含める必要があります。データ入力には 2 種類あります。複数の CSV ファイルを含む Azure BLOB ストレージ フォルダーを指す URI と、各 CSV ファイルに timestamp と variable という 2 つの列が含まれています。 もう 1 つの種類の入力は、すべての変数とタイムスタンプ列を含む Azure BLOB ストレージ内の CSV ファイルを指す URI です。

要求と応答のペイロードの JSON スキーマを次に示します。

要求本文:

ModelInfoスキーマ:

{
  dataSource: string, # Required.
  dataSchema: "OneTable" | "MultiTable", # Optional.
  startTime: string (date & time), # Required.
  endTime: string (date & time), # Required.
  displayName: string, # Optional.
  slidingWindow: number, # Optional.
  alignPolicy: {
    alignMode: "Inner" | "Outer", # Optional.
    fillNAMethod: "Previous" | "Subsequent" | "Linear" | "Zero" | "Fixed", # Optional.
    paddingValue: number, # Optional.
  }, # Optional.
  status: "CREATED" | "RUNNING" | "READY" | "FAILED", # Optional.
  errors: [
    {
      code: string, # Required.
      message: string, # Required.
    }
  ], # Optional.
  diagnosticsInfo: {
    modelState: {
      epochIds: [number], # Optional.
      trainLosses: [number], # Optional.
      validationLosses: [number], # Optional.
      latenciesInSeconds: [number], # Optional.
    }, # Optional.
    variableStates: [VariableState], # Optional.
  }, # Optional.
}

応答本文:

AnomalyDetectionModelスキーマ:

{
  modelId: string, # Required.
  createdTime: string (date & time), # Required.
  lastUpdatedTime: string (date & time), # Required.
  modelInfo: {
    dataSource: string, # Required.
    dataSchema: "OneTable" | "MultiTable", # Optional.
    startTime: string (date & time), # Required.
    endTime: string (date & time), # Required.
    displayName: string, # Optional.
    slidingWindow: number, # Optional.
    alignPolicy: {
      alignMode: "Inner" | "Outer", # Optional.
      fillNAMethod: "Previous" | "Subsequent" | "Linear" | "Zero" | "Fixed", # Optional.
      paddingValue: number, # Optional.
    }, # Optional.
    status: "CREATED" | "RUNNING" | "READY" | "FAILED", # Optional.
    errors: [
      {
        code: string, # Required.
        message: string, # Required.
      }
    ], # Optional.
    diagnosticsInfo: {
      modelState: {
        epochIds: [number], # Optional.
        trainLosses: [number], # Optional.
        validationLosses: [number], # Optional.
        latenciesInSeconds: [number], # Optional.
      }, # Optional.
      variableStates: [VariableState], # Optional.
    }, # Optional.
  }, # Optional.
}

適用対象