Usare Analisi del testo predefinite in Fabric con l'API REST e SynapseML (anteprima)
Importante
Questa funzionalità si trova nell’anteprima.
Analisi del testo è uno dei servizi di Azure AI che consente di eseguire analisi del testo con funzionalità di elaborazione del linguaggio naturale (Natural Language Processing).
Questa esercitazione illustra l'uso dell'analisi del testo in Fabric con API RESTful per:
- Rilevare le etichette di valutazione a livello di frase o documento.
- Identificare la lingua per un input di testo specificato.
- Estrarre le fasi chiave da un testo.
- Identificare le diverse entità in formato testo e classificarle in classi o tipi predefiniti.
Prerequisiti
# Get workload endpoints and access token
from synapse.ml.mlflow import get_mlflow_env_config
import json
mlflow_env_configs = get_mlflow_env_config()
access_token = access_token = mlflow_env_configs.driver_aad_token
prebuilt_AI_base_host = mlflow_env_configs.workload_endpoint + "cognitive/textanalytics/"
print("Workload endpoint for AI service: \n" + prebuilt_AI_base_host)
service_url = prebuilt_AI_base_host + "language/:analyze-text?api-version=2022-05-01"
# Make a RESful request to AI service
post_headers = {
"Content-Type" : "application/json",
"Authorization" : "Bearer {}".format(access_token)
}
def printresponse(response):
print(f"HTTP {response.status_code}")
if response.status_code == 200:
try:
result = response.json()
print(json.dumps(result, indent=2, ensure_ascii=False))
except:
print(f"pasre error {response.content}")
else:
print(response.headers)
print(f"error message: {response.content}")
Analisi valutazione
La funzionalità di analisi del sentiment consente di rilevare le etichette della valutazione (ad esempio "negativo", "neutrale" e "positivo") e i punteggi di attendibilità a livello di frase e documento. Questa funzionalità restituisce inoltre i punteggi di attendibilità compresi tra 0 e 1 per ogni documento per le frasi al suo interno rispetto a valutazioni positive, neutre e negative. Per l'elenco delle lingue abilitate, vedere il supporto del linguaggio di analisi del sentiment e del linguaggio di opinion mining.
import requests
from pprint import pprint
import uuid
post_body = {
"kind": "SentimentAnalysis",
"parameters": {
"modelVersion": "latest",
"opinionMining": "True"
},
"analysisInput":{
"documents":[
{
"id":"1",
"language":"en",
"text": "The food and service were unacceptable. The concierge was nice, however."
}
]
}
}
post_headers["x-ms-workload-resource-moniker"] = str(uuid.uuid1())
response = requests.post(service_url, json=post_body, headers=post_headers)
# Output all information of the request process
printresponse(response)
Output
HTTP 200
{
"kind": "SentimentAnalysisResults",
"results": {
"documents": [
{
"id": "1",
"sentiment": "mixed",
"confidenceScores": {
"positive": 0.43,
"neutral": 0.04,
"negative": 0.53
},
"sentences": [
{
"sentiment": "negative",
"confidenceScores": {
"positive": 0.0,
"neutral": 0.01,
"negative": 0.99
},
"offset": 0,
"length": 40,
"text": "The food and service were unacceptable. ",
"targets": [
{
"sentiment": "negative",
"confidenceScores": {
"positive": 0.01,
"negative": 0.99
},
"offset": 4,
"length": 4,
"text": "food",
"relations": [
{
"relationType": "assessment",
"ref": "#/documents/0/sentences/0/assessments/0"
}
]
},
{
"sentiment": "negative",
"confidenceScores": {
"positive": 0.01,
"negative": 0.99
},
"offset": 13,
"length": 7,
"text": "service",
"relations": [
{
"relationType": "assessment",
"ref": "#/documents/0/sentences/0/assessments/0"
}
]
}
],
"assessments": [
{
"sentiment": "negative",
"confidenceScores": {
"positive": 0.01,
"negative": 0.99
},
"offset": 26,
"length": 12,
"text": "unacceptable",
"isNegated": false
}
]
},
{
"sentiment": "positive",
"confidenceScores": {
"positive": 0.86,
"neutral": 0.08,
"negative": 0.07
},
"offset": 40,
"length": 32,
"text": "The concierge was nice, however.",
"targets": [
{
"sentiment": "positive",
"confidenceScores": {
"positive": 1.0,
"negative": 0.0
},
"offset": 44,
"length": 9,
"text": "concierge",
"relations": [
{
"relationType": "assessment",
"ref": "#/documents/0/sentences/1/assessments/0"
}
]
}
],
"assessments": [
{
"sentiment": "positive",
"confidenceScores": {
"positive": 1.0,
"negative": 0.0
},
"offset": 58,
"length": 4,
"text": "nice",
"isNegated": false
}
]
}
],
"warnings": []
}
],
"errors": [],
"modelVersion": "2022-11-01"
}
}
Rilevamento lingua
Rilevamento lingua valuta l'input di testo per ogni documento e restituisce gli identificatori di lingua con un punteggio che indica il livello di forza dell'analisi. Questa funzionalità è utile per gli archivi di contenuto che includono testo arbitrario, in cui la lingua è sconosciuta. Vedere le lingue supportate per il rilevamento della lingua per l'elenco delle lingue abilitate.
post_body = {
"kind": "LanguageDetection",
"parameters": {
"modelVersion": "latest"
},
"analysisInput":{
"documents":[
{
"id":"1",
"text": "This is a document written in English."
}
]
}
}
post_headers["x-ms-workload-resource-moniker"] = str(uuid.uuid1())
response = requests.post(service_url, json=post_body, headers=post_headers)
# Output all information of the request process
printresponse(response)
Output
HTTP 200
{
"kind": "LanguageDetectionResults",
"results": {
"documents": [
{
"id": "1",
"detectedLanguage": {
"name": "English",
"iso6391Name": "en",
"confidenceScore": 0.99
},
"warnings": []
}
],
"errors": [],
"modelVersion": "2022-10-01"
}
}
Estrattore di frasi chiave
La competenza Estrazione frasi chiave valuta il testo non strutturato e restituisce un elenco di frasi chiave. Questa funzionalità è utile se è necessario identificare rapidamente i punti rilevanti in una raccolta di documenti. Per l'elenco delle lingue abilitate, vedere le Lingue supportate per l’estrazione della frase chiave.
post_body = {
"kind": "KeyPhraseExtraction",
"parameters": {
"modelVersion": "latest"
},
"analysisInput":{
"documents":[
{
"id":"1",
"language":"en",
"text": "Dr. Smith has a very modern medical office, and she has great staff."
}
]
}
}
post_headers["x-ms-workload-resource-moniker"] = str(uuid.uuid1())
response = requests.post(service_url, json=post_body, headers=post_headers)
# Output all information of the request process
printresponse(response)
Output
HTTP 200
{
"kind": "KeyPhraseExtractionResults",
"results": {
"documents": [
{
"id": "1",
"keyPhrases": [
"modern medical office",
"Dr. Smith",
"great staff"
],
"warnings": []
}
],
"errors": [],
"modelVersion": "2022-10-01"
}
}
Riconoscimento delle entità denominate (NER)
Il riconoscimento dell’entità denominata (NER) è la possibilità di identificare entità diverse nel testo e classificarle in classi o tipi predefiniti, ad esempio persona, posizione, evento, prodotto e organizzazione. Per l'elenco completo delle lingue supportate, vedere Supporto linguistico NER (Riconoscimento entità denominata).
post_body = {
"kind": "EntityRecognition",
"parameters": {
"modelVersion": "latest"
},
"analysisInput":{
"documents":[
{
"id":"1",
"language": "en",
"text": "I had a wonderful trip to Seattle last week."
}
]
}
}
post_headers["x-ms-workload-resource-moniker"] = str(uuid.uuid1())
response = requests.post(service_url, json=post_body, headers=post_headers)
# Output all information of the request process
printresponse(response)
Output
HTTP 200
{
"kind": "EntityRecognitionResults",
"results": {
"documents": [
{
"id": "1",
"entities": [
{
"text": "trip",
"category": "Event",
"offset": 18,
"length": 4,
"confidenceScore": 0.74
},
{
"text": "Seattle",
"category": "Location",
"subcategory": "GPE",
"offset": 26,
"length": 7,
"confidenceScore": 1.0
},
{
"text": "last week",
"category": "DateTime",
"subcategory": "DateRange",
"offset": 34,
"length": 9,
"confidenceScore": 0.8
}
],
"warnings": []
}
],
"errors": [],
"modelVersion": "2021-06-01"
}
}
Collegamento di entità
Contenuto correlato
- Usare Analisi del testo predefinite in Fabric con SynapseML
- Come usare il traduttore di intelligenza artificiale di Azure predefinito in Fabric con l'API REST
- Usare Azure AI Translator predefinito in Fabric con SynapseML
- Usare OpenAI di Azure predefinito in Fabric con l'API REST
- Usare OpenAI di Azure predefinito in Fabric con Python SDK
- Usare OpenAI di Azure predefinito in Fabric con SynapseML