Condividi tramite


ExtensionsCatalog.ReplaceMissingValues Metodo

Definizione

Overload

ReplaceMissingValues(TransformsCatalog, InputOutputColumnPair[], MissingValueReplacingEstimator+ReplacementMode, Boolean)

Creare un ColumnCopyingEstimatoroggetto , che copia i dati dalla colonna specificata in in InputColumnName una nuova colonna e OutputColumnName sostituisce i valori mancanti in esso in base a replacementMode.

ReplaceMissingValues(TransformsCatalog, String, String, MissingValueReplacingEstimator+ReplacementMode, Boolean)

Creare un MissingValueReplacingEstimatoroggetto , che copia i dati dalla colonna specificata in in inputColumnName una nuova colonna e outputColumnName sostituisce i valori mancanti in esso in base a replacementMode.

ReplaceMissingValues(TransformsCatalog, InputOutputColumnPair[], MissingValueReplacingEstimator+ReplacementMode, Boolean)

Creare un ColumnCopyingEstimatoroggetto , che copia i dati dalla colonna specificata in in InputColumnName una nuova colonna e OutputColumnName sostituisce i valori mancanti in esso in base a replacementMode.

public static Microsoft.ML.Transforms.MissingValueReplacingEstimator ReplaceMissingValues (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, Microsoft.ML.Transforms.MissingValueReplacingEstimator.ReplacementMode replacementMode = Microsoft.ML.Transforms.MissingValueReplacingEstimator+ReplacementMode.DefaultValue, bool imputeBySlot = true);
static member ReplaceMissingValues : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * Microsoft.ML.Transforms.MissingValueReplacingEstimator.ReplacementMode * bool -> Microsoft.ML.Transforms.MissingValueReplacingEstimator
<Extension()>
Public Function ReplaceMissingValues (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional replacementMode As MissingValueReplacingEstimator.ReplacementMode = Microsoft.ML.Transforms.MissingValueReplacingEstimator+ReplacementMode.DefaultValue, Optional imputeBySlot As Boolean = true) As MissingValueReplacingEstimator

Parametri

catalog
TransformsCatalog

Catalogo della trasformazione.

columns
InputOutputColumnPair[]

Coppie di colonne di input e di output. Questo strumento di stima opera su scalare o vettore di float o double.

replacementMode
MissingValueReplacingEstimator.ReplacementMode

Tipo di sostituzione da utilizzare come specificato in MissingValueReplacingEstimator.ReplacementMode

imputeBySlot
Boolean

Se true, viene eseguita l'imputazione per slot di sostituzione. In caso contrario, il valore di sostituzione viene specificato per l'intera colonna vettoriale. Questa impostazione viene ignorata per i vettori scalari e variabili, in cui l'imputazione è sempre per l'intera colonna.

Restituisce

Esempio

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;

namespace Samples.Dynamic
{
    class ReplaceMissingValuesMultiColumn
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features1 = new float[3] {1, 1, 0}, Features2 =
                    new float[2] {1, 1} },

                new DataPoint(){ Features1 = new float[3] {0, float.NaN, 1},
                    Features2 = new float[2] {0, 1} },

                new DataPoint(){ Features1 = new float[3] {-1, float.NaN, -3},
                    Features2 = new float[2] {-1, float.NaN} },

                new DataPoint(){ Features1 = new float[3] {-1, 6, -3}, Features2 =
                    new float[2] {0, float.PositiveInfinity} },
            };
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Here we use the default replacement mode, which replaces the value
            // with the default value for its type.
            var defaultPipeline = mlContext.Transforms.ReplaceMissingValues(new[] {
                new InputOutputColumnPair("MissingReplaced1", "Features1"),
                new InputOutputColumnPair("MissingReplaced2", "Features2")
            },
            MissingValueReplacingEstimator.ReplacementMode.DefaultValue);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var defaultTransformer = defaultPipeline.Fit(data);
            var defaultTransformedData = defaultTransformer.Transform(data);

            // We can extract the newly created column as an IEnumerable of
            // SampleDataTransformed, the class we define below.
            var defaultRowEnumerable = mlContext.Data.CreateEnumerable<
                SampleDataTransformed>(defaultTransformedData, reuseRowObject:
                false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            foreach (var row in defaultRowEnumerable)
                Console.WriteLine("Features1: [" + string.Join(", ", row
                    .Features1) + "]\t MissingReplaced1: [" + string.Join(", ", row
                    .MissingReplaced1) + "]\t Features2: [" + string.Join(", ", row
                    .Features2) + "]\t MissingReplaced2: [" + string.Join(", ", row
                    .MissingReplaced2) + "]");

            // Expected output:
            // Features1: [1, 1, 0]     MissingReplaced1: [1, 1, 0]     Features2: [1, 1]       MissingReplaced2: [1, 1]
            // Features1: [0, NaN, 1]   MissingReplaced1: [0, 0, 1]     Features2: [0, 1]       MissingReplaced2: [0, 1]
            // Features1: [-1, NaN, -3]         MissingReplaced1: [-1, 0, -3]   Features2: [-1, NaN]    MissingReplaced2: [-1, 0]
            // Features1: [-1, 6, -3]   MissingReplaced1: [-1, 6, -3]   Features2: [0, ∞]       MissingReplaced2: [0, ∞]

            // Here we use the mean replacement mode, which replaces the value with
            // the mean of the non values that were not missing.
            var meanPipeline = mlContext.Transforms.ReplaceMissingValues(new[] {
                new InputOutputColumnPair("MissingReplaced1", "Features1"),
                new InputOutputColumnPair("MissingReplaced2", "Features2")
            },
            MissingValueReplacingEstimator.ReplacementMode.Mean);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator.
            // This operation doesn't actually evaluate data until we read the data
            // below.
            var meanTransformer = meanPipeline.Fit(data);
            var meanTransformedData = meanTransformer.Transform(data);

            // We can extract the newly created column as an IEnumerable of
            // SampleDataTransformed, the class we define below.
            var meanRowEnumerable = mlContext.Data.CreateEnumerable<
                SampleDataTransformed>(meanTransformedData, reuseRowObject: false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            foreach (var row in meanRowEnumerable)
                Console.WriteLine("Features1: [" + string.Join(", ", row
                    .Features1) + "]\t MissingReplaced1: [" + string.Join(", ", row
                    .MissingReplaced1) + "]\t Features2: [" + string.Join(", ", row
                    .Features2) + "]\t MissingReplaced2: [" + string.Join(", ", row
                    .MissingReplaced2) + "]");

            // Expected output:
            // Features1: [1, 1, 0]     MissingReplaced1: [1, 1, 0]     Features2: [1, 1]       MissingReplaced2: [1, 1]
            // Features1: [0, NaN, 1]   MissingReplaced1: [0, 3.5, 1]   Features2: [0, 1]       MissingReplaced2: [0, 1]
            // Features1: [-1, NaN, -3]         MissingReplaced1: [-1, 3.5, -3]         Features2: [-1, NaN]    MissingReplaced2: [-1, 1]
            // Features1: [-1, 6, -3]   MissingReplaced1: [-1, 6, -3]   Features2: [0, ∞]       MissingReplaced2: [0, ∞]
        }

        private class DataPoint
        {
            [VectorType(3)]
            public float[] Features1 { get; set; }
            [VectorType(2)]
            public float[] Features2 { get; set; }
        }

        private sealed class SampleDataTransformed : DataPoint
        {
            [VectorType(3)]
            public float[] MissingReplaced1 { get; set; }
            [VectorType(2)]
            public float[] MissingReplaced2 { get; set; }
        }
    }
}

Commenti

Questa trasformazione può operare su più colonne.

Si applica a

ReplaceMissingValues(TransformsCatalog, String, String, MissingValueReplacingEstimator+ReplacementMode, Boolean)

Creare un MissingValueReplacingEstimatoroggetto , che copia i dati dalla colonna specificata in in inputColumnName una nuova colonna e outputColumnName sostituisce i valori mancanti in esso in base a replacementMode.

public static Microsoft.ML.Transforms.MissingValueReplacingEstimator ReplaceMissingValues (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.MissingValueReplacingEstimator.ReplacementMode replacementMode = Microsoft.ML.Transforms.MissingValueReplacingEstimator+ReplacementMode.DefaultValue, bool imputeBySlot = true);
static member ReplaceMissingValues : Microsoft.ML.TransformsCatalog * string * string * Microsoft.ML.Transforms.MissingValueReplacingEstimator.ReplacementMode * bool -> Microsoft.ML.Transforms.MissingValueReplacingEstimator
<Extension()>
Public Function ReplaceMissingValues (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional replacementMode As MissingValueReplacingEstimator.ReplacementMode = Microsoft.ML.Transforms.MissingValueReplacingEstimator+ReplacementMode.DefaultValue, Optional imputeBySlot As Boolean = true) As MissingValueReplacingEstimator

Parametri

catalog
TransformsCatalog

Catalogo della trasformazione.

outputColumnName
String

Nome della colonna risultante dalla trasformazione di inputColumnName. Il tipo di dati di questa colonna sarà uguale a quello della colonna di input.

inputColumnName
String

Nome della colonna da cui copiare i dati. Questo strumento di stima opera su scalare o vettore di Single o Double.

replacementMode
MissingValueReplacingEstimator.ReplacementMode

Tipo di sostituzione da utilizzare come specificato in MissingValueReplacingEstimator.ReplacementMode

imputeBySlot
Boolean

Se true, viene eseguita l'imputazione per slot di sostituzione. In caso contrario, il valore di sostituzione viene specificato per l'intera colonna vettoriale. Questa impostazione viene ignorata per i vettori scalari e variabili, in cui l'imputazione è sempre per l'intera colonna.

Restituisce

Esempio

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;

namespace Samples.Dynamic
{
    class ReplaceMissingValues
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[3] {float.PositiveInfinity, 1,
                    0 } },

                new DataPoint(){ Features = new float[3] {0, float.NaN, 1} },
                new DataPoint(){ Features = new float[3] {-1, 2, -3} },
                new DataPoint(){ Features = new float[3] {-1, float.NaN, -3} },
            };
            var data = mlContext.Data.LoadFromEnumerable(samples);

            // Here we use the default replacement mode, which replaces the value
            // with the default value for its type.
            var defaultPipeline = mlContext.Transforms.ReplaceMissingValues(
                "MissingReplaced", "Features", MissingValueReplacingEstimator
                .ReplacementMode.DefaultValue);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var defaultTransformer = defaultPipeline.Fit(data);
            var defaultTransformedData = defaultTransformer.Transform(data);

            // We can extract the newly created column as an IEnumerable of
            // SampleDataTransformed, the class we define below.
            var defaultRowEnumerable = mlContext.Data.CreateEnumerable<
                SampleDataTransformed>(defaultTransformedData, reuseRowObject:
                false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            foreach (var row in defaultRowEnumerable)
                Console.WriteLine("Features: [" + string.Join(", ", row.Features) +
                    "]\t MissingReplaced: [" + string.Join(", ", row
                    .MissingReplaced) + "]");

            // Expected output:
            // Features: [∞, 1, 0]      MissingReplaced: [∞, 1, 0]
            // Features: [0, NaN, 1]    MissingReplaced: [0, 0, 1]
            // Features: [-1, 2, -3]    MissingReplaced: [-1, 2, -3]
            // Features: [-1, NaN, -3]  MissingReplaced: [-1, 0, -3]

            // Here we use the mean replacement mode, which replaces the value with
            // the mean of the non values that were not missing.
            var meanPipeline = mlContext.Transforms.ReplaceMissingValues(
                "MissingReplaced", "Features", MissingValueReplacingEstimator
                .ReplacementMode.Mean);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var meanTransformer = meanPipeline.Fit(data);
            var meanTransformedData = meanTransformer.Transform(data);

            // We can extract the newly created column as an IEnumerable of
            // SampleDataTransformed, the class we define below.
            var meanRowEnumerable = mlContext.Data.CreateEnumerable<
                SampleDataTransformed>(meanTransformedData, reuseRowObject: false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            foreach (var row in meanRowEnumerable)
                Console.WriteLine("Features: [" + string.Join(", ", row.Features) +
                    "]\t MissingReplaced: [" + string.Join(", ", row
                    .MissingReplaced) + "]");

            // Expected output:
            // Features: [∞, 1, 0]      MissingReplaced: [∞, 1, 0]
            // Features: [0, NaN, 1]    MissingReplaced: [0, 1.5, 1]
            // Features: [-1, 2, -3]    MissingReplaced: [-1, 2, -3]
            // Features: [-1, NaN, -3]  MissingReplaced: [-1, 1.5, -3]
        }

        private class DataPoint
        {
            [VectorType(3)]
            public float[] Features { get; set; }
        }

        private sealed class SampleDataTransformed : DataPoint
        {
            [VectorType(3)]
            public float[] MissingReplaced { get; set; }
        }
    }
}

Si applica a