Databricks Runtime 11.3 LTS
Le note sulla versione seguenti forniscono informazioni su Databricks Runtime 11.3 LTS, con tecnologia Apache Spark 3.3.0. Databricks ha rilasciato questa versione nell'ottobre 2022.
Nota
LTS indica che questa versione è supportata a lungo termine. Vedere Ciclo di vita della versione LTS di Databricks Runtime.
Suggerimento
Per visualizzare le note sulla versione per le versioni di Databricks Runtime che hanno raggiunto la fine del supporto (EoS), vedere Note sulla versione della fine del supporto di Databricks Runtime. Le versioni EoS di Databricks Runtime sono state ritirate e potrebbero non essere aggiornate.
Modifiche comportamentali
[Modifica di rilievo] La nuova versione di Python richiede l'aggiornamento dei client Python V1 di Databricks Connect
Per applicare le patch di sicurezza necessarie, la versione di Python in Databricks Runtime 11.3 LTS viene aggiornata dalla versione 3.9.5 alla versione 3.9.19. Poiché queste modifiche possono causare errori nei client che usano funzioni PySpark specifiche, tutti i client che usano Databricks Connect V1 per Python con Databricks Runtime 11.3 LTS devono essere aggiornati a Python 3.9.7 o versione successiva.
Miglioramenti e nuove funzionalità
- Trigger Structured Streaming una volta deprecato
- Modificare il percorso di origine per Il caricatore automatico
- Il connettore Databricks Oggigiorno supporta ora la lettura dai flussi di dati di Oggigiornos in modalità EFO
- Nuove funzioni geospaziali H3 e supporto Photon aggiunto per tutte le funzioni H3
- Nuove funzionalità per l'I/O predittivo
- Aumento delle partizioni iniziali da analizzare per le query selettive
- Nuova visualizzazione delle versioni del piano AQE
- Nuove modalità asincrone di rilevamento dello stato di avanzamento e eliminazione dei log
- Structured Streaming on Unity Catalog supporta ora
display()
- Gli eventi della pipeline vengono ora registrati in formato JSON
- Elaborazione arbitraria con stato in Structured Streaming con Python
- Inferenza data nei file CSV
- Supporto per clonare le tabelle Apache Parquet e Apache Iceberg (anteprima pubblica)
- Usare SQL per specificare percorsi di archiviazione a livello di schema e catalogo per le tabelle gestite del catalogo Unity
Trigger Structured Streaming una volta deprecato
L'impostazione Trigger.Once
è stata deprecata. Databricks consiglia di usare Trigger.AvailableNow
. Vedere Configurare gli intervalli di trigger del flusso strutturato.
Modificare il percorso di origine per Il caricatore automatico
È ora possibile modificare il percorso di input della directory per il caricatore automatico configurato con la modalità elenco directory senza dover scegliere una nuova directory del checkpoint. Vedere Modificare il percorso di origine per Il caricatore automatico.
Il connettore Databricks Oggigiorno supporta ora la lettura dai flussi di dati di Oggigiornos in modalità EFO
È ora possibile usare l'origine di streaming strutturata Databricks Jsons in Databricks Runtime 11.3 LTS per eseguire query che leggono dai flussi di dati di Oggigiornos in modalità fan-out avanzata. In questo modo è possibile una velocità effettiva dedicata per partizione, per consumer e recapito di record in modalità push.
Nuove funzioni geospaziali H3 e supporto Photon aggiunto per tutte le funzioni H3
Introduzione di 4 nuove funzioni H3, h3_maxchild
, h3_minchild
, h3_pointash3
e h3_pointash3string
. Queste funzioni sono disponibili in SQL, Scala e Python. Tutte le espressioni H3 sono ora supportate in Photon. Si veda Funzioni geospaziali H3.
Nuove funzionalità per l'I/O predittivo
Photon supporta la modalità di intervallo per l'esecuzione di fotogrammi, usando RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
. Photon supporta anche la modalità di intervallo per i fotogrammi in crescita, usando RANGE BETWEEN UNBOUNDED PRECEDING AND offset_stop { PRECEDING | FOLLOWING }
.
Aumento delle partizioni iniziali da analizzare per le query selettive
Il valore delle partizioni iniziali da analizzare è stato aumentato a 10 per le query selettive con take/tail/limit
nei cluster abilitati per Photon e LIMIT
in Databricks SQL. Con 10 partizioni, è possibile evitare il sovraccarico di avvio di più processi di piccole dimensioni e un aumento delle prestazioni lento. È anche possibile configurare questa operazione tramite spark.sql.limit.selectiveInitialNumPartitions
.
Nuova visualizzazione delle versioni del piano AQE
Introduzione alle versioni del piano AQE che consentono di visualizzare gli aggiornamenti del piano di runtime dall'esecuzione di query adattive (AQE).
Nuove modalità asincrone di rilevamento dello stato di avanzamento e eliminazione dei log
Introduzione alle modalità Structured Streaming denominata rilevamento asincrono dello stato di avanzamento e eliminazione asincrona dei log. La modalità di eliminazione asincrona dei log riduce la latenza delle query di streaming rimuovendo i log usati per il rilevamento dello stato in background.
Structured Streaming on Unity Catalog supporta ora display()
È ora possibile usare display()
quando si usa Structured Streaming per lavorare con le tabelle registrate nel catalogo Unity.
Gli eventi della pipeline vengono ora registrati in formato JSON
Azure Databricks scrive ora gli eventi della pipeline nel log del driver in formato JSON. Anche se ogni evento sarà analizzabile da JSON, gli eventi di grandi dimensioni potrebbero non contenere tutti i campi o i campi potrebbero essere troncati. Ogni evento viene registrato in una singola riga con il prefisso Event received:
. Di seguito è riportato un evento di esempio.
Event received: {"id":"some-event-id","origin":{"pipeline_id":"some-pipeline-id","cluster_id":"some-cluster id"},"message":"simple [truncated] message","level":"WARN"}
Elaborazione arbitraria con stato in Structured Streaming con Python
Introduzione alla applyInPandasWithState
funzione che può essere usata per eseguire l'elaborazione arbitraria con stato in PySpark. Equivale alla flatMapGroupsWithState
funzione nell'API Java.
Inferenza data nei file CSV
Introduzione di un'inferenza migliorata delle colonne di tipo data nei file CSV. Quando il formato della data è coerente tra i record di una colonna, tali colonne possono essere dedotti come DateType
. È anche possibile avere una combinazione di formati di data tra colonne diverse. Azure Databricks può dedurre automaticamente il formato della data per ogni colonna. Le colonne di data nei file CSV precedenti a Databricks Runtime 11.3 LTS vengono lasciate come StringType
.
Supporto per clonare le tabelle Apache Parquet e Apache Iceberg (anteprima pubblica)
È ora possibile usare clone per creare e aggiornare in modo incrementale le tabelle Delta che esegono il mirroring delle tabelle Apache Parquet e Apache Iceberg. È possibile aggiornare la tabella Parquet di origine e applicare in modo incrementale le modifiche alla tabella Delta clonata con il comando clone. Vedere Clonare in modo incrementale le tabelle Parquet e Iceberg in Delta Lake.
Usare SQL per specificare percorsi di archiviazione a livello di schema e catalogo per le tabelle gestite del catalogo Unity
È ora possibile usare il MANAGED LOCATION
comando SQL per specificare un percorso di archiviazione cloud per le tabelle gestite a livello di catalogo e schema. Vedere CREATE CATALOG e CREATE SCHEMA.
Modifiche del comportamento
Databricks Connect 11.3.2
L'aggiornamento client di Databricks Connect 11.3.2 è ora supportato. Vedere le note sulla versione di Databricks Connect e Databricks Connect.
Aggiornamento del connettore Snowflake di Azure Databricks
Il connettore Azure Databricks Snowflake è stato aggiornato alla versione più recente del codice dal repository open source Snowflake Data Source per Apache Spark. È ora completamente compatibile con Databricks Runtime 11.3 LTS, incluso il pushdown del predicato e il pushdown del piano di query interno mantenendo tutte le funzionalità della versione open source.
La cache Hadoop per S3A è ora disabilitata
La cache Hadoop (API Principale 3.3.4 di Apache Hadoop FileSystem) per S3A è ora disabilitata. Questo è l'allineamento con altri connettori di archiviazione cloud. Per i carichi di lavoro che si basano sulla memorizzazione nella cache del file system, assicurarsi che i file system appena creati siano forniti con le configurazioni Hadoop corrette, inclusi i provider di credenziali.
Lo schema della raccolta di statistiche Delta Lake corrisponde ora all'ordine delle colonne nella definizione dello schema di tabella
Questa modifica risolve un bug nel protocollo Delta Lake in cui le statistiche non sono state raccolte per le colonne a causa di una mancata corrispondenza nell'ordinamento dei dataframe e delle colonne della tabella. In alcuni casi, è possibile che si verifichi una riduzione delle prestazioni di scrittura a causa della raccolta di statistiche sui campi non registrati in precedenza. Vedere Skipping dei dati per Delta Lake.
applyInPandasWithState genera un errore se la query ha una sequenza casuale dopo l'operatore
L'operatore applyInPandasWithState
genera un errore se la query ha shuffle
dopo l'operatore . Ciò si verifica quando l'utente aggiunge shuffle
dopo l'operazione o l'utilità di ottimizzazione o il sink aggiunge shuffle
in modo implicito.
Aggiornamenti della libreria
- Librerie Python aggiornate:
- distlib da 0.3.5 a 0.3.6
- Librerie R aggiornate:
- scopa da 1.0.0 a 1.0.1
- chiamante dalla versione 3.7.1 alla versione 3.7.2
- dplyr da 1.0.9 a 1.0.10
- dtplyr da 1.2.1 a 1.2.2
- forcat da 0.5.1 a 0.5.2
- futuro da 1.27.0 a 1.28.0
- future.apply dalla versione 1.9.0 alla versione 1.9.1
- gert da 1.7.0 a 1.8.0
- globals da 0.16.0 a 0.16.1
- gtable da 0.3.0 a 0.3.1
- haven from 2.5.0 to 2.5.1
- hms da 1.1.1 a 1.1.2
- httr da 1.4.3 a 1.4.4
- magliare da 1,39 a 1,40
- modelr da 0.1.8 a 0.1.9
- pilastro da 1.8.0 a 1.8.1
- progressr da 0.10.1 a 0.11.0
- readxl da 1.4.0 a 1.4.1
- repository da 2.0.1 a 2.0.2
- rlang da 1.0.4 a 1.0.5
- rmarkdown da 2.14 a 2.16
- RSQLite da 2.2.15 a 2.2.16
- rstudioapi da 0.13 a 0.14
- versioni da 2.1.1 a 2.1.2
- rvest da 1.0.2 a 1.0.3
- scala da 1.2.0 a 1.2.1
- sparklyr da 1.7.7 a 1.7.8
- stringr da 1.4.0 a 1.4.1
- sopravvivenza da 3,2-13 a 3,4-0
- tinytex da 0,40 a 0,41
- viridisLite da 0.4.0 a 0.4.1
- Librerie Java aggiornate:
- com.fasterxml.jackson.core.jackson-annotations da 2.13.3 a 2.13.4
- com.fasterxml.jackson.core.jackson-core da 2.13.3 a 2.13.4
- com.fasterxml.jackson.core.jackson-databind da 2.13.3 a 2.13.4
- com.fasterxml.jackson.dataformat.jackson-dataformat-cbor da 2.13.3 a 2.13.4
- com.fasterxml.jackson.datatype.jackson-datatype-joda da 2.13.3 a 2.13.4
- com.fasterxml.jackson.datatype.jackson-datatype-jsr310 da 2.13.3 a 2.13.4
- com.fasterxml.jackson.module.jackson-module-paranamer da 2.13.3 a 2.13.4
- com.fasterxml.jackson.module.jackson-module-scala_2.12 da 2.13.3 a 2.13.4
- org.apache.hadoop.hadoop-client-api da 3.3.2-databricks a 3.3.4-databricks
- org.apache.hadoop.hadoop-client-runtime da 3.3.2 a 3.3.4
- org.apache.orc.orc-core da 1.7.5 a 1.7.6
- org.apache.orc.orc-mapreduce da 1.7.5 a 1.7.6
- org.apache.orc.orc-shims da 1.7.5 a 1.7.6
- org.apache.parquet-column da 1.12.0-databricks-0004 a 1.12.0-databricks-0007
- org.apache.parquet.common da 1.12.0-databricks-0004 a 1.12.0-databricks-0007
- org.apache.parquet.encoding da 1.12.0-databricks-0004 a 1.12.0-databricks-0007
- org.apache.parquet-format-structures da 1.12.0-databricks-0004 a 1.12.0-databricks-0007
- org.apache.parquet.hadoop da 1.12.0-databricks-0004 a 1.12.0-databricks-0007
- org.apache.parquet-jackson da 1.12.0-databricks-0004 a 1.12.0-databricks-0007
- org.glassfish.jersey.containers.jersey-container-servlet da 2.34 a 2.36
- org.glassfish.jersey.containers.jersey-container-servlet-core da 2.34 a 2.36
- org.glassfish.jersey.core.jersey-client da 2.34 a 2.36
- org.glassfish.jersey.core.jersey-common da 2.34 a 2.36
- org.glassfish.jersey.core.jersey-server da 2.34 a 2.36
- org.glassfish.jersey.inject.jersey-hk2 da 2.34 a 2.36
Apache Spark
Databricks Runtime 11.3 LTS include Apache Spark 3.3.0. Questa versione include tutte le correzioni e i miglioramenti di Spark inclusi in Databricks Runtime 11.2 (EoS), nonché le correzioni di bug e i miglioramenti aggiuntivi seguenti apportati a Spark:
- [SPARK-39957] [WARMFIX][SC-111425][CORE] Delay onDisconnected to enable Driver receives ExecutorExitCode
- [SPARK-39955] [WARMFIX][SC-111424][CORE] Migliorare il processo LaunchTask per evitare errori di fase causati da messaggi LaunchTask non riusciti
- [SPARK-40474] [SC-106248][Cherry-Pick] Correggere il comportamento di inferenza dello schema CSV per le colonne datetime e introdurre il rilevamento automatico per i campi Data
- [SPARK-40535] [SC-111243][SQL] Correzione del bug del buffer di AggregazionngAccumulator non verrà creato se le righe di input sono vuote
- [SPARK-40434] [SC-111125][SC-111144][SC-111138][SPARK-40435][11.3][SS][PYTHON] Implementare applyInPandasWithState in PySpark
- [SPARK-40460] [SC-110832][SS] Correzione delle metriche di streaming durante la selezione
_metadata
- [SPARK-40324] [SC-109943][SQL] Fornire un contesto di query di
ParseException
- [SPARK-40466] [SC-110899][SS] Migliorare il messaggio di errore quando DSv2 è disabilitato mentre DSv1 non è disponibile
- [SPARK-40456] [SC-110848][SQL] PartitionIterator.hasNext dovrebbe essere economico per chiamare ripetutamente
- [SPARK-40169] [SC-110772][SQL] Non eseguire il push dei filtri Parquet senza riferimenti allo schema dei dati
- [SPARK-40467] [SC-110759][SS] Dividere FlatMapGroupsWithState fino a più gruppi di test
- [SPARK-40468] [SC-110813][SQL] Correzione dell'eliminazione delle colonne in CSV quando è selezionata _corrupt_record
- [SPARK-40291] [SC-110085][SQL] Miglioramento del messaggio per la colonna non nel gruppo per errore della clausola
- [SPARK-40398] [SC-110762][CORE][SQL] Usare loop anziché l'API Arrays.stream
- [SPARK-40433] [SC-110684][SS][PYTHON] Aggiungere aJVMRow in PythonSQLUtils per convertire la riga PySpark selezionata in riga JVM
- [SPARK-40414] [SC-110568][SQL][PYTHON] Tipo più generico in PythonArrowInput e PythonArrowOutput
- [SPARK-40352] [SC-109945][SQL] Aggiungere alias di funzione: len, datepart, dateadd, date_diff e curdate
- [SPARK-40470] [SC-110761][SQL] Gestire GetArrayStructFields e GetMapValue nella funzione "arrays_zip"
- [SPARK-40387] [SC-110685][SQL] Migliorare l'implementazione di Spark Decimal
- [SPARK-40429] [SC-110675][SQL] Impostare KeyGroupedPartitioning solo quando la colonna a cui si fa riferimento si trova nell'output
- [SPARK-40432] [SC-110716][SS][PYTHON] Introduzione a GroupStateImpl e GroupStateTimeout in PySpark
- [SPARK-39915] [SC-110496][SQL] Verificare che il partizionamento dell'output sia specificato dall'utente in AQE
- [SPARK-29260] [SQL] Supporto
ALTER DATABASE SET LOCATION
se HMS supporta - [SPARK-40185] [SC-110056][SQL] Rimuovere il suggerimento di colonna quando l'elenco dei candidati è vuoto
- [SPARK-40362] [SC-110401][SQL] Correzione della canonizzazione binaryComparison
- [SPARK-40411] [SC-110381][SS] Effettuare il refactoring di FlatMapGroupsWithStateExec per avere un tratto padre
- [SPARK-40293] [SC-110084][SQL] Rendere il messaggio di errore della tabella V2 più significativo
- [SPARK-38734] [SC-110383][SQL] Rimuovere la classe di errore
INDEX_OUT_OF_BOUNDS
- [SPARK-40292] [SC-110300][SQL] Correzione dei nomi di colonna nella funzione "arrays_zip" quando si fa riferimento alle matrici da struct annidati
- [SPARK-40276] [SC-109674][CORE] Ridurre le dimensioni dei risultati di RDD.takeOrdered
- [SPARK-40197] [SC-109176][SQL] Sostituire il piano di query con il contesto per MULTI_VALUE_SUBQUERY_ERROR
- [SPARK-40300] [SC-109942][SQL] Eseguire la migrazione alla
DATATYPE_MISMATCH
classe di errore - [SPARK-40149] [SC-110055][SQL] Propagare colonne di metadati tramite Project
- [SPARK-40280] [SC-110146][SQL] Aggiunta del supporto per il push in parquet per int con annotazioni e long
- [SPARK-40220] [SC-110143][SC-109175][SQL] Non restituire la mappa vuota dei parametri del messaggio di errore
- [SPARK-40295] [SC-110070][SQL] Consenti funzioni v2 con argomenti letterali nella distribuzione/ordinamento di scrittura
- [SPARK-40156] [SC-109264][SQL]
url_decode()
deve restituire una classe di errore - [SPARK-39195] [SQL] OutputCommitCoordinator Spark deve interrompere la fase di interruzione quando il file di cui è stato eseguito il commit non è coerente con lo stato dell'attività
- [SPARK-40260] [SC-109424][SQL] Usare classi di errore negli errori di compilazione di GROUP BY una posizione
- [SPARK-40205] [SC-110144][SC-109082][SQL] Fornire un contesto di query di ELEMENT_AT_BY_INDEX_ZERO
- [SPARK-40112] [SC-109676][SQL] Migliorare la funzione TO_BINARY()
- [SPARK-40209] [SC-109081][SQL] Non modificare il valore dell'intervallo decimale in in
changePrecision()
caso di errori - [SPARK-40319] [SC-109873][SQL] Rimuovere il metodo di errore di esecuzione della query duplicato per PARSE_DATETIME_BY_NEW_PARSER
- [SPARK-40222] [SC-109209][SQL] Il try_add numerico/try_divide/try_subtract/try_multiply dovrebbe generare un errore dai figli
- [SPARK-40183] [SC-108907][SQL] Usare la classe di errore NUMERIC_VALUE_OUT_OF_RANGE per l'overflow nella conversione decimale
- [SPARK-40180] [SC-109069][SQL] Formattare i messaggi di errore in base a
spark-sql
- [SPARK-40153] [SC-109165][SQL] Unificare le funzioni di risoluzione e le funzioni con valori di tabella
- [SPARK-40308] [SC-109880][SQL] Consenti la funzione degli
str_to_map
argomenti delimitatori non piegabili - [SPARK-40219] [SC-110052][SC-109663][SQL] Il piano logico di visualizzazione risolto deve contenere lo schema per evitare la ricerca ridondante
- [SPARK-40098] [SC-109939][SC-108693][SQL] Formattare i messaggi di errore nel server Thrift
- [SPARK-39917] [SC-109038][SQL] Usare classi di errore diverse per l'overflow aritmetico numerico/intervallo
- [SPARK-40033] [SC-109875][SQL] Supporto per l'eliminazione degli schemi annidati tramite element_at
- [SPARK-40194] [SC-109660][SQL] La funzione SPLIT in un'espressione regolare vuota deve troncare una stringa vuota finale.
- [SPARK-40228] [SC-109835][SQL] Non semplificare multiLike se figlio non è un'espressione economica
- [SPARK-40039] [SC-109896][SC-109260][SS] Introduzione a una gestione file del checkpoint di streaming basata sull'interfaccia Abortable di Hadoop
- [SPARK-40285] [SC-109679][SQL] Semplificare l'oggetto
roundTo[Numeric]
per SparkDecimal
- [SPARK-39896] [SC-109658][SQL] UnwrapCastInBinaryComparison dovrebbe funzionare quando il valore letterale del downcast In/InSet non è riuscito
- [SPARK-40040] [SC-109662][SQL] Eseguire il push del limite locale su entrambi i lati se la condizione di join è vuota
- [SPARK-40055] [SC-109075][SQL] listCatalogs deve restituire anche spark_catalog anche quando spark_catalog'implementazione è defaultSessionCatalog
- [SPARK-39915] [SC-109391][SQL] Dataset.repartition(N) potrebbe non creare N partizioni non AQE
- [SPARK-40207] [SC-109401][SQL] Specificare il nome della colonna quando il tipo di dati non è supportato dall'origine dati
- [SPARK-40245] [SC-109295][SQL] Correzione del controllo di uguaglianza di FileScan quando le colonne del filtro dati o della partizione non vengono lette
- [SPARK-40113] [SC-109405][SQL] Implementazioni dell'interfaccia Reactor ParquetScanBuilder DataSourceV2
- [SPARK-40211] [SC-109226][CORE][SQL] Consenti la personalizzazione del numero di partizioni iniziali nel comportamento take()
- [SPARK-40252] [SC-109379][SQL] Sostituire
Stream.collect(Collectors.joining)
con l'APIStringJoiner
- [SPARK-40247] [SC-109272][SQL] Correzione del controllo di uguaglianza bitset
- [SPARK-40067] [SQL] Usare Table#name() anziché Scan#name() per popolare il nome della tabella nel nodo BatchScan in SparkUI
- [SPARK-39966] [SQL] Usare il filtro V2 in SupportsDelete
- [SPARK-39607] [SC-109268][SQL][DSV2] La distribuzione e l'ordinamento supportano la funzione V2 nella scrittura
- [SPARK-40224] [SC-109271][SQL] Rendere objectHashAggregateExec rilasciare la memoria in modo eager quando il fallback viene eseguito in base all'ordinamento
- [SPARK-40013] [SQL] Le espressioni DS V2 devono avere l'impostazione predefinita
toString
- [SPARK-40214] [SC-109079][PYTHON][SQL] Aggiungere 'get' alle funzioni
- [SPARK-40192] [SC-109089][SQL][ML] Rimuovere il gruppo ridondante per
- [SPARK-40146] [SC-108694][SQL] Semplicemente il codegen di ottenere il valore della mappa
- [SPARK-40109] [SQL] Nuova funzione SQL: get()
- [SPARK-39929] [SQL] DS V2 supporta funzioni stringa push-down (non ANSI)
- [SPARK-39819] [SQL] Il push verso il basso dell'aggregazione DS V2 può essere eseguito con top N o paging (ordinamento con espressioni)
- [SPARK-40213] [SC-109077][SQL] Supportare la conversione di valori ASCII per i caratteri Latin-1
- [SPARK-39887] [SQL] RemoveRedundantAliases deve mantenere gli alias che rendono univoco l'output dei nodi di proiezione
- [SPARK-39764] [SQL] Rendere PhysicalOperation uguale a ScanOperation
- [SPARK-39964] [SQL] Il pushdown di DS V2 deve unificare il percorso di conversione
- [SPARK-39528] [SQL] Usare il filtro V2 in SupportsRuntimeFiltering
- [SPARK-40066] [SQL] Modalità ANSI: restituisce sempre Null per l'accesso non valido alla colonna della mappa
- [SPARK-39912] [SPARK-39828][SQL] Perfezionare CatalogImpl
- [SPARK-39833] [SC-108736][SQL] Disabilitare l'indice di colonna Parquet in DSv1 per risolvere un problema di correttezza nel caso di colonne di dati e partizione sovrapposte
- [SPARK-39880] [SQL] Il comando V2 SHOW FUNCTIONS deve stampare il nome di funzione qualificato come v1
- [SPARK-39767] [SQL] Rimuovere UnresolvedDBObjectName e aggiungere UnresolvedIdentifier
- [SPARK-40163] [SC-108740][SQL] feat: SparkSession.config(Map)
- [SPARK-40136] [SQL] Correggere il frammento di contesti di query SQL
- [SPARK-40107] [SC-108689][SQL] Estrarre la conversione vuota2null da FileFormatWriter
- [SPARK-40121] [PYTHON][SQL] Inizializzare la proiezione usata per la funzione definita dall'utente Python
- [SPARK-40128] [SQL] Fare in modo che VectorizedColumnReader riconosca DELTA_LENGTH_BYTE_ARRAY come codifica di colonna autonoma
- [SPARK-40132] [ML] Ripristinare rawPredictionCol in MultilayerPerceptronClassifier.setParams
- [SPARK-40050] [SC-108696][SQL] Migliorare
EliminateSorts
per supportare la rimozione degli ordinamenti tramiteLocalLimit
- [SPARK-39629] [SQL] Supporto di FUNZIONI SHOW v2
- [SPARK-39925] [SC-108734][SQL] Aggiungere overload array_sort(column, comparator) alle operazioni del dataframe
- [SPARK-40117] [PYTHON][SQL] Convertire la condizione in java in DataFrameWriterV2.overwrite
- [SPARK-40105] [SQL] Migliorare la ripartizione in ReplaceCTERefWithRepartition
- [SPARK-39503] [SQL] Aggiungere il nome del catalogo sessione per la tabella e la funzione del database v1
- [SPARK-39889] [SQL] Usare classi di errore diverse per l'intervallo/numerico diviso per 0
- [SPARK-39741] [SQL] Supportare la codifica/decodifica dell'URL come funzione predefinita e riordinare le funzioni correlate all'URL
- [SPARK-40102] [SQL] Usare SparkException anziché IllegalStateException in SparkPlan
- [SPARK-40014] [SQL] Supporto del cast di decimali a intervalli ANSI
- [SPARK-39776] [SQL][FOLLOW] Aggiornare UT di PlanStabilitySuite in modalità ANSI
- [SPARK-39963] [SQL] Semplificare
SimplifyCasts.isWiderCast
Aggiornamenti di manutenzione
Vedere Aggiornamenti della manutenzione di Databricks Runtime 11.3.
Ambiente di sistema
- Sistema operativo: Ubuntu 20.04.5 LTS
- Java: Zulu 8.56.0.21-CA-linux64
- Scala: 2.12.14
- Python: 3.9.19
- R: 4.1.3
- Delta Lake: 2.1.0
Librerie Python installate
Library | Versione | Library | Versione | Library | Versione |
---|---|---|---|---|---|
argon2-cffi | 20.1.0 | async-generator | 1.10 | attrs | 21.2.0 |
backcall | 0.2.0 | backports.entry-points-selectable | 1.1.1 | black | 22.3.0 |
bleach | 4.0.0 | boto3 | 1.21.18 | botocore | 1.24.18 |
certifi | 2021.10.8 | cffi | 1.14.6 | chardet | 4.0.0 |
charset-normalizer | 2.0.4 | click | 8.0.3 | cryptography | 3.4.8 |
cycler | 0.10.0 | Cython | 0.29.24 | dbus-python | 1.2.16 |
debugpy | 1.4.1 | decorator | 5.1.0 | defusedxml | 0.7.1 |
distlib | 0.3.6 | entrypoints | 0.3 | facet-overview | 1.0.0 |
filelock | 3.8.0 | idna | 3.2 | ipykernel | 6.12.1 |
ipython | 7.32.0 | ipython-genutils | 0.2.0 | ipywidgets | 7.7.0 |
jedi | 0.18.0 | Jinja2 | 2.11.3 | jmespath | 0.10.0 |
joblib | 1.0.1 | jsonschema | 3.2.0 | jupyter-client | 6.1.12 |
jupyter-core | 4.8.1 | jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 |
kiwisolver | 1.3.1 | MarkupSafe | 2.0.1 | matplotlib | 3.4.3 |
matplotlib-inline | 0.1.2 | mistune | 0.8.4 | mypy-extensions | 0.4.3 |
nbclient | 0.5.3 | nbconvert | 6.1.0 | nbformat | 5.1.3 |
nest-asyncio | 1.5.1 | notebook | 6.4.5 | numpy | 1.20.3 |
packaging | 21.0 | pandas | 1.3.4 | pandocfilters | 1.4.3 |
parso | 0.8.2 | pathspec | 0.9.0 | patsy | 0.5.2 |
pexpect | 4.8.0 | pickleshare | 0.7.5 | Pillow | 8.4.0 |
pip | 21.2.4 | platformdirs | 2.5.2 | plotly | 5.9.0 |
prometheus-client | 0.11.0 | prompt-toolkit | 3.0.20 | protobuf | 4.21.5 |
psutil | 5.8.0 | psycopg2 | 2.9.3 | ptyprocess | 0.7.0 |
pyarrow | 7.0.0 | pycparser | 2.20 | Pygments | 2.10.0 |
PyGObject | 3.36.0 | pyodbc | 4.0.31 | pyparsing | 3.0.4 |
pyrsistent | 0.18.0 | python-dateutil | 2.8.2 | pytz | 2021.3 |
pyzmq | 22.2.1 | requests | 2.26.0 | requests-unixsocket | 0.2.0 |
s3transfer | 0.5.2 | scikit-learn | 0.24.2 | scipy | 1.7.1 |
seaborn | 0.11.2 | Send2Trash | 1.8.0 | setuptools | 58.0.4 |
six | 1.16.0 | ssh-import-id | 5.10 | statsmodels | 0.12.2 |
tenacity | 8.0.1 | terminado | 0.9.4 | testpath | 0.5.0 |
threadpoolctl | 2.2.0 | tokenize-rt | 4.2.1 | tomli | 2.0.1 |
tornado | 6.1 | traitlets | 5.1.0 | typing-extensions | 3.10.0.2 |
aggiornamenti automatici | 0.1 | urllib3 | 1.26.7 | virtualenv | 20.8.0 |
wcwidth | 0.2.5 | webencodings | 0.5.1 | wheel | 0.37.0 |
widgetsnbextension | 3.6.0 |
Librerie R installate
Le librerie R vengono installate dallo snapshot di Microsoft CRAN nel 2022-09-08.
Library | Versione | Library | Versione | Library | Versione |
---|---|---|---|---|---|
askpass | 1.1 | assertthat | 0.2.1 | backports | 1.4.1 |
base | 4.1.3 | base64enc | 0.1-3 | bit | 4.0.4 |
bit64 | 4.0.5 | blob | 1.2.3 | boot | 1.3-28 |
brew | 1.0-7 | brio | 1.1.3 | Scopa | 1.0.1 |
bslib | 0.4.0 | cachem | 1.0.6 | callr | 3.7.2 |
caret | 6.0-93 | cellranger | 1.1.0 | chron | 2.3-57 |
class | 7.3-20 | cli | 3.3.0 | clipr | 0.8.0 |
cluster | 2.1.3 | codetools | 0.2-18 | colorspace | 2.0-3 |
commonmark | 1.8.0 | compilatore | 4.1.3 | config | 0.3.1 |
cpp11 | 0.4.2 | crayon | 1.5.1 | credentials | 1.3.2 |
curl | 4.3.2 | data.table | 1.14.2 | datasets | 4.1.3 |
DBI | 1.1.3 | dbplyr | 2.2.1 | desc | 1.4.1 |
devtools | 2.4.4 | diffobj | 0.3.5 | digest | 0.6.29 |
downlit | 0.4.2 | dplyr | 1.0.10 | dtplyr | 1.2.2 |
e1071 | 1.7-11 | puntini di sospensione | 0.3.2 | evaluate | 0.16 |
fansi | 1.0.3 | farver | 2.1.1 | fastmap | 1.1.0 |
fontawesome | 0.3.0 | forcats | 0.5.2 | foreach | 1.5.2 |
foreign | 0.8-82 | forge | 0.2.0 | fs | 1.5.2 |
future | 1.28.0 | future.apply | 1.9.1 | gargle | 1.2.0 |
generics | 0.1.3 | gert | 1.8.0 | ggplot2 | 3.3.6 |
gh | 1.3.0 | gitcreds | 0.1.1 | glmnet | 4.1-4 |
globals | 0.16.1 | glue | 1.6.2 | googledrive | 2.0.0 |
googlesheets4 | 1.0.1 | Gower | 1.0.0 | grafica | 4.1.3 |
grDevices | 4.1.3 | grid | 4.1.3 | gridExtra | 2.3 |
gsubfn | 0,7 | gtable | 0.3.1 | hardhat | 1.2.0 |
haven | 2.5.1 | highr | 0.9 | hms | 1.1.2 |
htmltools | 0.5.3 | htmlwidgets | 1.5.4 | httpuv | 1.6.5 |
httr | 1.4.4 | ids | 1.0.1 | ini | 0.3.1 |
ipred | 0.9-13 | isoband | 0.2.5 | Iteratori | 1.0.14 |
jquerylib | 0.1.4 | jsonlite | 1.8.0 | KernSmooth | 2.23-20 |
knitr | 1,40 | Etichettatura | 0.4.2 | later | 1.3.0 |
Lattice | 0.20-45 | Java | 1.6.10 | lifecycle | 1.0.1 |
listenv | 0.8.0 | lubridate | 1.8.0 | magrittr | 2.0.3 |
markdown | 1.1 | MASS | 7.3-56 | Matrice | 1.4-1 |
memoise | 2.0.1 | methods | 4.1.3 | mgcv | 1.8-40 |
mime | 0.12 | miniUI | 0.1.1.1 | ModelMetrics | 1.2.2.2 |
modelr | 0.1.9 | munsell | 0.5.0 | nlme | 3.1-157 |
nnet | 7.3-17 | numDeriv | 2016.8-1.1 | openssl | 2.0.2 |
parallel | 4.1.3 | parallelly | 1.32.1 | Concetto fondamentale | 1.8.1 |
pkgbuild | 1.3.1 | pkgconfig | 2.0.3 | pkgdown | 2.0.6 |
pkgload | 1.3.0 | plogr | 0.2.0 | plyr | 1.8.7 |
praise | 1.0.0 | prettyunits | 1.1.1 | Proc | 1.18.0 |
processx | 3.7.0 | prodlim | 2019.11.13 | profvis | 0.3.7 |
Avanzamento | 1.2.2 | progressr | 0.11.0 | promises | 1.2.0.1 |
proto | 1.0.0 | proxy | 0.4-27 | ps | 1.7.1 |
purrr | 0.3.4 | r2d3 | 0.2.6 | R6 | 2.5.1 |
ragg | 1.2.2 | randomForest | 4.7-1.1 | rappdirs | 0.3.3 |
rcmdcheck | 1.4.0 | RColorBrewer | 1.1-3 | Rcpp | 1.0.9 |
RcppEigen | 0.3.3.9.2 | readr | 2.1.2 | readxl | 1.4.1 |
ricette | 1.0.1 | rematch | 1.0.1 | rematch2 | 2.1.2 |
remotes | 2.4.2 | reprex | 2.0.2 | reshape2 | 1.4.4 |
rlang | 1.0.5 | rmarkdown | 2.16 | RODBC | 1.3-19 |
roxygen2 | 7.2.1 | rpart | 4.1.16 | rprojroot | 2.0.3 |
Rserve | 1.8-11 | RSQLite | 2.2.16 | rstudioapi | 0.14 |
rversions | 2.1.2 | rvest | 1.0.3 | sass | 0.4.2 |
Scalabilità | 1.2.1 | selectr | 0.4-2 | sessioninfo | 1.2.2 |
Forma | 1.4.6 | shiny | 1.7.2 | sourcetools | 0.1.7 |
sparklyr | 1.7.8 | SparkR | 3.3.0 | spaziale | 7.3-11 |
Spline | 4.1.3 | sqldf | 0.4-11 | SQUAREM | 2021.1 |
stats | 4.1.3 | stats4 | 4.1.3 | stringi | 1.7.8 |
stringr | 1.4.1 | Sopravvivenza | 3.4-0 | sys | 3.4 |
systemfonts | 1.0.4 | tcltk | 4.1.3 | testthat | 3.1.4 |
textshaping | 0.3.6 | tibble | 3.1.8 | tidyr | 1.2.0 |
tidyselect | 1.1.2 | tidyverse | 1.3.2 | timeDate | 4021.104 |
tinytex | 0,41 | tools | 4.1.3 | tzdb | 0.3.0 |
urlchecker | 1.0.1 | usethis | 2.1.6 | UTF8 | 1.2.2 |
utils | 4.1.3 | uuid | 1.1-0 | vctrs | 0.4.1 |
viridisLite | 0.4.1 | vroom | 1.5.7 | waldo | 0.4.0 |
whisker | 0.4 | withr | 2.5.0 | xfun | 0,32 |
xml2 | 1.3.3 | xopen | 1.0.0 | xtable | 1.8-4 |
yaml | 2.3.5 | zip | 2.2.0 |
Librerie Java e Scala installate (versione del cluster Scala 2.12)
ID gruppo | ID artefatto | Versione |
---|---|---|
antlr | antlr | 2.7.7 |
com.amazonaws | amazon-distribuisci-client | 1.12.0 |
com.amazonaws | aws-java-sdk-autoscaling | 1.12.189 |
com.amazonaws | aws-java-sdk-cloudformation | 1.12.189 |
com.amazonaws | aws-java-sdk-cloudfront | 1.12.189 |
com.amazonaws | aws-java-sdk-cloudhsm | 1.12.189 |
com.amazonaws | aws-java-sdk-cloudsearch | 1.12.189 |
com.amazonaws | aws-java-sdk-cloudtrail | 1.12.189 |
com.amazonaws | aws-java-sdk-cloudwatch | 1.12.189 |
com.amazonaws | aws-java-sdk-cloudwatchmetrics | 1.12.189 |
com.amazonaws | aws-java-sdk-codedeploy | 1.12.189 |
com.amazonaws | aws-java-sdk-cognitoidentity | 1.12.189 |
com.amazonaws | aws-java-sdk-cognitosync | 1.12.189 |
com.amazonaws | aws-java-sdk-config | 1.12.189 |
com.amazonaws | aws-java-sdk-core | 1.12.189 |
com.amazonaws | aws-java-sdk-datapipeline | 1.12.189 |
com.amazonaws | aws-java-sdk-directconnect | 1.12.189 |
com.amazonaws | aws-java-sdk-directory | 1.12.189 |
com.amazonaws | aws-java-sdk-dynamodb | 1.12.189 |
com.amazonaws | aws-java-sdk-ec2 | 1.12.189 |
com.amazonaws | aws-java-sdk-ecs | 1.12.189 |
com.amazonaws | aws-java-sdk-efs | 1.12.189 |
com.amazonaws | aws-java-sdk-elasticache | 1.12.189 |
com.amazonaws | aws-java-sdk-elasticbeanstalk | 1.12.189 |
com.amazonaws | aws-java-sdk-elasticloadbalancing | 1.12.189 |
com.amazonaws | aws-java-sdk-elastictranscoder | 1.12.189 |
com.amazonaws | aws-java-sdk-emr | 1.12.189 |
com.amazonaws | aws-java-sdk-glacier | 1.12.189 |
com.amazonaws | aws-java-sdk-glue | 1.12.189 |
com.amazonaws | aws-java-sdk-iam | 1.12.189 |
com.amazonaws | aws-java-sdk-importexport | 1.12.189 |
com.amazonaws | aws-java-sdk-consultas | 1.12.189 |
com.amazonaws | aws-java-sdk-kms | 1.12.189 |
com.amazonaws | aws-java-sdk-lambda | 1.12.189 |
com.amazonaws | aws-java-sdk-logs | 1.12.189 |
com.amazonaws | aws-java-sdk-machinelearning | 1.12.189 |
com.amazonaws | aws-java-sdk-opsworks | 1.12.189 |
com.amazonaws | aws-java-sdk-rds | 1.12.189 |
com.amazonaws | aws-java-sdk-redshift | 1.12.189 |
com.amazonaws | aws-java-sdk-route53 | 1.12.189 |
com.amazonaws | aws-java-sdk-s3 | 1.12.189 |
com.amazonaws | aws-java-sdk-ses | 1.12.189 |
com.amazonaws | aws-java-sdk-simpledb | 1.12.189 |
com.amazonaws | aws-java-sdk-simpleworkflow | 1.12.189 |
com.amazonaws | aws-java-sdk-sns | 1.12.189 |
com.amazonaws | aws-java-sdk-sqs | 1.12.189 |
com.amazonaws | aws-java-sdk-ssm | 1.12.189 |
com.amazonaws | aws-java-sdk-storagegateway | 1.12.189 |
com.amazonaws | aws-java-sdk-sts | 1.12.189 |
com.amazonaws | aws-java-sdk-support | 1.12.189 |
com.amazonaws | aws-java-sdk-swf-libraries | 1.11.22 |
com.amazonaws | aws-java-sdk-workspaces | 1.12.189 |
com.amazonaws | jmespath-java | 1.12.189 |
com.chuusai | shapeless_2.12 | 2.3.3 |
com.clearspring.analytics | stream | 2.9.6 |
com.databricks | Rserve | 1.8-3 |
com.databricks | jets3t | 0.7.1-0 |
com.databricks.scalapb | compilerplugin_2.12 | 0.4.15-10 |
com.databricks.scalapb | scalapb-runtime_2.12 | 0.4.15-10 |
com.mdfsoftware | kryo-shaded | 4.0.2 |
com.mdfsoftware | minlog | 1.3.0 |
com.fasterxml | compagno di classe | 1.3.4 |
com.fasterxml.jackson.core | annotazioni jackson | 2.13.4 |
com.fasterxml.jackson.core | jackson-core | 2.13.4 |
com.fasterxml.jackson.core | jackson-databind | 2.13.4 |
com.fasterxml.jackson.dataformat | jackson-dataformat-cbor | 2.13.4 |
com.fasterxml.jackson.datatype | jackson-datatype-joda | 2.13.4 |
com.fasterxml.jackson.datatype | jackson-datatype-jsr310 | 2.13.4 |
com.fasterxml.jackson.module | jackson-module-paranamer | 2.13.4 |
com.fasterxml.jackson.module | jackson-module-scala_2.12 | 2.13.4 |
com.github.ben-manes.caffeina | caffeina | 2.3.4 |
com.github.fommil | jniloader | 1.1 |
com.github.fommil.netlib | core | 1.1.2 |
com.github.fommil.netlib | native_ref-java | 1.1 |
com.github.fommil.netlib | native_ref-java-natives | 1.1 |
com.github.fommil.netlib | native_system-java | 1.1 |
com.github.fommil.netlib | native_system-java-natives | 1.1 |
com.github.fommil.netlib | netlib-native_ref-linux-x86_64-natives | 1.1 |
com.github.fommil.netlib | netlib-native_system-linux-x86_64-natives | 1.1 |
com.github.luben | zstd-jni | 1.5.2-1 |
com.github.wendykierp | JTransforms | 3.1 |
com.google.code.findbugs | jsr305 | 3.0.0 |
com.google.code.gson | gson | 2.8.6 |
com.google.crypto.tink | tink | 1.6.1 |
com.google.flatbuffers | flatbuffers-java | 1.12.0 |
com.google.guava | guaiava | 15.0 |
com.google.protobuf | protobuf-java | 2.6.1 |
com.h2database | h2 | 2.0.204 |
com.helger | profiler | 1.1.1 |
com.jcraft | jsch | 0.1.50 |
com.jolbox | bonecp | 0.8.0.RELEASE |
com.lihaoyi | sourcecode_2.12 | 0.1.9 |
com.microsoft.azure | azure-data-lake-store-sdk | 2.3.9 |
com.microsoft.sqlserver | mssql-jdbc | 9.2.1.jre8 |
com.ning | compress-lzf | 1.1 |
com.sun.mail | javax.mail | 1.5.2 |
com.tdunning | JSON | 1.8 |
com.thoughtworks.paranamer | paranamer | 2.8 |
com.trueaccord.lenses | lenses_2.12 | 0.4.12 |
com.twitter | chill-java | 0.10.0 |
com.twitter | chill_2.12 | 0.10.0 |
com.twitter | util-app_2.12 | 7.1.0 |
com.twitter | util-core_2.12 | 7.1.0 |
com.twitter | util-function_2.12 | 7.1.0 |
com.twitter | util-jvm_2.12 | 7.1.0 |
com.twitter | util-lint_2.12 | 7.1.0 |
com.twitter | util-registry_2.12 | 7.1.0 |
com.twitter | util-stats_2.12 | 7.1.0 |
com.typesafe | config | 1.2.1 |
com.typesafe.scala-logging | scala-logging_2.12 | 3.7.2 |
com.uber | h3 | 3.7.0 |
com.univocità | univocità-parser | 2.9.1 |
com.zaxxer | HikariCP | 4.0.3 |
commons-cli | commons-cli | 1.5.0 |
commons-codec | commons-codec | 1.15 |
commons-collections | commons-collections | 3.2.2 |
commons-dbcp | commons-dbcp | 1.4 |
commons-fileupload | commons-fileupload | 1.3.3 |
commons-httpclient | commons-httpclient | 3.1 |
commons-io | commons-io | 2.11.0 |
commons-lang | commons-lang | 2.6 |
commons-logging | commons-logging | 1.1.3 |
commons-pool | commons-pool | 1.5.4 |
dev.sdk.netlib | arpack | 2.2.1 |
dev.sdk.netlib | blas | 2.2.1 |
dev.sdk.netlib | lapack | 2.2.1 |
info.ganglia.gmetric4j | gmetric4j | 1.0.10 |
io.airlift | aircompressor | 0.21 |
io.delta | delta-sharing-spark_2.12 | 0.5.1 |
io.dropwizard.metrics | metrics-core | 4.1.1 |
io.dropwizard.metrics | metrics-graphite | 4.1.1 |
io.dropwizard.metrics | metrics-healthchecks | 4.1.1 |
io.dropwizard.metrics | metrics-jetty9 | 4.1.1 |
io.dropwizard.metrics | metrics-jmx | 4.1.1 |
io.dropwizard.metrics | metrics-json | 4.1.1 |
io.dropwizard.metrics | metrics-jvm | 4.1.1 |
io.dropwizard.metrics | metrics-servlets | 4.1.1 |
io.netty | netty-all | 4.1.74.Final |
io.netty | netty-buffer | 4.1.74.Final |
io.netty | netty-codec | 4.1.74.Final |
io.netty | netty-common | 4.1.74.Final |
io.netty | netty-handler | 4.1.74.Final |
io.netty | netty-resolver | 4.1.74.Final |
io.netty | netty-tcnative-classes | 2.0.48.Final |
io.netty | netty-transport | 4.1.74.Final |
io.netty | netty-transport-classes-epoll | 4.1.74.Final |
io.netty | netty-transport-classes-kqueue | 4.1.74.Final |
io.netty | netty-transport-native-epoll-linux-aarch_64 | 4.1.74.Final |
io.netty | netty-transport-native-epoll-linux-x86_64 | 4.1.74.Final |
io.netty | netty-transport-native-kqueue-osx-aarch_64 | 4.1.74.Final |
io.netty | netty-transport-native-kqueue-osx-x86_64 | 4.1.74.Final |
io.netty | netty-transport-native-unix-common | 4.1.74.Final |
io.prometheus | simpleclient | 0.7.0 |
io.prometheus | simpleclient_common | 0.7.0 |
io.prometheus | simpleclient_dropwizard | 0.7.0 |
io.prometheus | simpleclient_pushgateway | 0.7.0 |
io.prometheus | simpleclient_servlet | 0.7.0 |
io.prometheus.jmx | agente di raccolta | 0.12.0 |
jakarta.annotation | jakarta.annotation-api | 1.3.5 |
jakarta.servlet | jakarta.servlet-api | 4.0.3 |
jakarta.validation | jakarta.validation-api | 2.0.2 |
jakarta.ws.rs | jakarta.ws.rs-api | 2.1.6 |
javax.activation | activation | 1.1.1 |
javax.annotation | javax.annotation-api | 1.3.2 |
javax.el | javax.el-api | 2.2.4 |
javax.jdo | jdo-api | 3.0.1 |
javax.transaction | jta | 1.1 |
javax.transaction | transaction-api | 1.1 |
javax.xml.bind | jaxb-api | 2.2.11 |
javolution | javolution | 5.5.1 |
jline | jline | 2.14.6 |
joda-time | joda-time | 2.10.13 |
net.java.dev.jna | jna | 5.8.0 |
net.razorvine | sottaceto | 1.2 |
net.sf.jpam | jpam | 1.1 |
net.sf.opencsv | opencsv | 2.3 |
net.sf.supercsv | super-csv | 2.2.0 |
net.snowflake | snowflake-ingest-sdk | 0.9.6 |
net.snowflake | snowflake-jdbc | 3.13.14 |
net.sourceforge.f2j | arpack_combined_all | 0.1 |
org.acplt.remotetea | remotetea-oncrpc | 1.1.2 |
org.antlr | ST4 | 4.0.4 |
org.antlr | antlr-runtime | 3.5.2 |
org.antlr | antlr4-runtime | 4.8 |
org.antlr | stringtemplate | 3.2.1 |
org.apache.ant | ant | 1.9.2 |
org.apache.ant | ant-jsch | 1.9.2 |
org.apache.ant | ant-launcher | 1.9.2 |
org.apache.arrow | formato freccia | 7.0.0 |
org.apache.arrow | arrow-memory-core | 7.0.0 |
org.apache.arrow | arrow-memory-netty | 7.0.0 |
org.apache.arrow | freccia-vettore | 7.0.0 |
org.apache.avro | avro | 1.11.0 |
org.apache.avro | avro-ipc | 1.11.0 |
org.apache.avro | avro-mapred | 1.11.0 |
org.apache.commons | commons-collections4 | 4.4 |
org.apache.commons | commons-compress | 1.21 |
org.apache.commons | commons-crypto | 1.1.0 |
org.apache.commons | commons-lang3 | 3.12.0 |
org.apache.commons | commons-math3 | 3.6.1 |
org.apache.commons | commons-text | 1.9 |
org.apache.curator | curatore-cliente | 2.13.0 |
org.apache.curator | curatore-framework | 2.13.0 |
org.apache.curator | ricette curatori | 2.13.0 |
org.apache.derby | derby | 10.14.2.0 |
org.apache.hadoop | hadoop-client-api | 3.3.4-databricks |
org.apache.hadoop | hadoop-client-runtime | 3.3.4 |
org.apache.hive | hive-beeline | 2.3.9 |
org.apache.hive | hive-cli | 2.3.9 |
org.apache.hive | hive-jdbc | 2.3.9 |
org.apache.hive | hive-llap-client | 2.3.9 |
org.apache.hive | hive-llap-common | 2.3.9 |
org.apache.hive | hive-serde | 2.3.9 |
org.apache.hive | hive-shims | 2.3.9 |
org.apache.hive | hive-storage-api | 2.7.2 |
org.apache.hive.shims | hive-shims-0.23 | 2.3.9 |
org.apache.hive.shims | hive-shims-common | 2.3.9 |
org.apache.hive.shims | hive-shims-scheduler | 2.3.9 |
org.apache.httpcomponents | httpclient | 4.5.13 |
org.apache.httpcomponents | httpcore | 4.4.14 |
org.apache.ivy | ivy | 2.5.0 |
org.apache.logging.log4j | log4j-1.2-api | 2.18.0 |
org.apache.logging.log4j | log4j-api | 2.18.0 |
org.apache.logging.log4j | log4j-core | 2.18.0 |
org.apache.logging.log4j | log4j-slf4j-impl | 2.18.0 |
org.apache.mesos | mesos-shaded-protobuf | 1.4.0 |
org.apache.orc | orc-core | 1.7.6 |
org.apache.orc | orc-mapreduce | 1.7.6 |
org.apache.orc | orc-shim | 1.7.6 |
org.apache.parquet | parquet-column | 1.12.0-databricks-0007 |
org.apache.parquet | parquet-common | 1.12.0-databricks-0007 |
org.apache.parquet | codifica parquet | 1.12.0-databricks-0007 |
org.apache.parquet | strutture parquet-format-structures | 1.12.0-databricks-0007 |
org.apache.parquet | parquet-hadoop | 1.12.0-databricks-0007 |
org.apache.parquet | parquet-jackson | 1.12.0-databricks-0007 |
org.apache.thrift | libfb303 | 0.9.3 |
org.apache.thrift | libthrift | 0.12.0 |
org.apache.xbean | xbean-asm9-shaded | 4.20 |
org.apache.yetus | annotazioni del gruppo di destinatari | 0.5.0 |
org.apache.zookeeper | zookeeper | 3.6.2 |
org.apache.zookeeper | zookeeper-jute | 3.6.2 |
org.checkerframework | checker-qual | 3.5.0 |
org.codehaus.jackson | jackson-core-asl | 1.9.13 |
org.codehaus.jackson | jackson-mapper-asl | 1.9.13 |
org.codehaus.janino | commons-compiler | 3.0.16 |
org.codehaus.janino | janino | 3.0.16 |
org.datanucleus | datanucleus-api-jdo | 4.2.4 |
org.datanucleus | datanucleus-core | 4.1.17 |
org.datanucleus | datanucleus-rdbms | 4.1.19 |
org.datanucleus | javax.jdo | 3.2.0-m3 |
org.eclipse.jetty | jetty-client | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-continuation | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-http | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-io | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-jndi | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-plus | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-proxy | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-security | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-server | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-servlet | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-servlets | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-util | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-util-ajax | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-webapp | 9.4.46.v20220331 |
org.eclipse.jetty | jetty-xml | 9.4.46.v20220331 |
org.eclipse.jetty.websocket | websocket-api | 9.4.46.v20220331 |
org.eclipse.jetty.websocket | websocket-client | 9.4.46.v20220331 |
org.eclipse.jetty.websocket | websocket-common | 9.4.46.v20220331 |
org.eclipse.jetty.websocket | websocket-server | 9.4.46.v20220331 |
org.eclipse.jetty.websocket | websocket-servlet | 9.4.46.v20220331 |
org.fusesource.leveldbjni | leveldbjni-all | 1.8 |
org.glassfish.hk2 | hk2-api | 2.6.1 |
org.glassfish.hk2 | hk2-locator | 2.6.1 |
org.glassfish.hk2 | hk2-utils | 2.6.1 |
org.glassfish.hk2 | osgi-resource-locator | 1.0.3 |
org.glassfish.hk2.external | aopalliance-repackaged | 2.6.1 |
org.glassfish.hk2.external | jakarta.inject | 2.6.1 |
org.glassfish.jersey.containers | jersey-container-servlet | 2.36 |
org.glassfish.jersey.containers | jersey-container-servlet-core | 2.36 |
org.glassfish.jersey.core | jersey-client | 2.36 |
org.glassfish.jersey.core | maglia-comune | 2.36 |
org.glassfish.jersey.core | jersey-server | 2.36 |
org.glassfish.jersey.inject | jersey-hk2 | 2.36 |
org.hibernate.validator | hibernate-validator | 6.1.0.Final |
org.javassist | javassist | 3.25.0-GA |
org.jboss.logging | jboss-logging | 3.3.2.Final |
org.jdbi | jdbi | 2.63.1 |
org.jetbrains | annotations | 17.0.0 |
org.joda | joda-convert | 1.7 |
org.jodd | jodd-core | 3.5.2 |
org.json4s | json4s-ast_2.12 | 3.7.0-M11 |
org.json4s | json4s-core_2.12 | 3.7.0-M11 |
org.json4s | json4s-jackson_2.12 | 3.7.0-M11 |
org.json4s | json4s-scalap_2.12 | 3.7.0-M11 |
org.lz4 | lz4-java | 1.8.0 |
org.mariadb.jdbc | mariadb-java-client | 2.7.4 |
org.mlflow | mlflow-spark | 1.27.0 |
org.objenesis | objenesis | 2.5.1 |
org.postgresql | postgresql | 42.3.3 |
org.roaringbitmap | RoaringBitmap | 0.9.25 |
org.roaringbitmap | Spessori | 0.9.25 |
org.rocksdb | rocksdbjni | 6.24.2 |
org.rosuda.REngine | REngine | 2.1.0 |
org.scala-lang | scala-compiler_2.12 | 2.12.14 |
org.scala-lang | scala-library_2.12 | 2.12.14 |
org.scala-lang | scala-reflect_2.12 | 2.12.14 |
org.scala-lang.modules | scala-collection-compat_2.12 | 2.4.3 |
org.scala-lang.modules | scala-parser-combinators_2.12 | 1.1.2 |
org.scala-lang.modules | scala-xml_2.12 | 1.2.0 |
org.scala-sbt | test-interface | 1.0 |
org.scalacheck | scalacheck_2.12 | 1.14.2 |
org.scalactic | scalactic_2.12 | 3.0.8 |
org.scalanlp | breeze-macros_2.12 | 1.2 |
org.scalanlp | breeze_2.12 | 1.2 |
org.scalatest | scalatest_2.12 | 3.0.8 |
org.slf4j | jcl-over-slf4j | 1.7.36 |
org.slf4j | jul-to-slf4j | 1.7.36 |
org.slf4j | slf4j-api | 1.7.36 |
org.spark-project.spark | inutilizzato | 1.0.0 |
org.threeten | treten-extra | 1.5.0 |
org.cortanaani | xz | 1.8 |
org.typelevel | algebra_2.12 | 2.0.1 |
org.typelevel | cats-kernel_2.12 | 2.1.1 |
org.typelevel | macro-compat_2.12 | 1.1.1 |
org.typelevel | spire-macros_2.12 | 0.17.0 |
org.typelevel | spire-platform_2.12 | 0.17.0 |
org.typelevel | spire-util_2.12 | 0.17.0 |
org.typelevel | spire_2.12 | 0.17.0 |
org.wildfly.openssl | wildfly-openssl | 1.0.7.Final |
org.xerial | sqlite-jdbc | 3.8.11.2 |
org.xerial.snappy | snappy-java | 1.1.8.4 |
org.yaml | snakeyaml | 1.24 |
oro | oro | 2.0.8 |
pl.edu.icm | JLargeArrays | 1,5 |
software.amazon.ion | ion-java | 1.0.2 |
stax | stax-api | 1.0.1 |