Databricks Runtime 7.0 ML (EoS)
Nota
Il supporto per questa versione di Databricks Runtime è terminato. Per la data di fine del supporto, vedere Cronologia di fine del supporto. Per tutte le versioni supportate di Databricks Runtime, vedere Versioni e compatibilità delle note sulla versione di Databricks Runtime.
Databricks ha rilasciato questa versione nel giugno 2020.
Databricks Runtime 7.0 per Machine Learning è un ambiente pronto all’uso ottimizzato per l'esecuzione di processi di apprendimento automatico e data science basato su Databricks Runtime 7.0 (EoS). Databricks Runtime ML contiene molte di queste popolari librerie per l’apprendimento automatico, tra cui TensorFlow, PyTorch e XGBoost. È inoltre supportato il training distribuito con Horovod.
Per altre informazioni, incluse le istruzioni per la creazione di un cluster di Databricks Runtime ML, vedere IA e Machine Learning in Databricks.
Nuove caratteristiche e modifiche importanti
Databricks Runtime 7.0 ML è basato su Databricks Runtime 7.0. Per informazioni sulle novità di Databricks Runtime 7.0, tra cui Apache Spark MLlib e SparkR, vedere le note sulla versione di Databricks Runtime 7.0 (EoS).
Pianificazione compatibile con GPU
Databricks Runtime 7.0 ML supporta la pianificazione compatibile con GPU da Apache Spark 3.0. Azure Databricks lo configura automaticamente. Vedere Pianificazione GPU.
Modifiche principali all'ambiente Python di Machine Learning
Questa sezione descrive le principali modifiche apportate all'ambiente Python di Machine Learning preinstallato rispetto a Databricks Runtime 6.6 ML (EoS). È anche consigliabile esaminare le principali modifiche apportate all'ambiente Python di base in Databricks Runtime 7.0 (EoS). Per un elenco completo dei pacchetti Python installati e delle relative versioni, vedere librerie Python.
Pacchetti Python aggiornati
- tensorflow 1.15.0 -> 2.2.0
- tensorboard 1.15.0 -> 2.2.2
- pytorch 1.4.0 -> 1.5.0
- xgboost 0.90 -> 1.1.1
- sparkdl 1.6.0-db1 -> 2.1.0-db1
- hyperopt 0.2.2.db1 -> 0.2.4.db1
Pacchetti Python aggiunti
- lightgbm: 2.3.0
- nltk: 3.4.5
- petastorm: 0.9.2
- plotly: 4.5.2
Pacchetti Python rimossi
- argparse
- boto (usare invece
boto3
) - colorama
- deprecated
- et-xmlfile
- fusepy
- html5lib
- jdcal
- keras (usare invece
tensorflow.keras
) - keras-applications (usare invece
tensorflow.keras.applications
) - llvmlite
- lxml
- nose
- nose-exclude
- numba
- openpyxl
- pathlib2
- filo
- pymongo
- singledispatch
- tensorboardX (usare invece
torch.utils.tensorboard
) - virtualenv
- webencodings
Modifiche principali all'ambiente ML R
Databricks Runtime 7.0 ML include una versione non modificata di RStudio Server Open Source v1.2.5033 per cui il codice sorgente è disponibile in GitHub. Altre informazioni su RStudio Server in Azure Databricks.
Modifiche ai pacchetti Spark di ML, alle librerie Java e Scala
I pacchetti seguenti vengono aggiornati. Alcune versioni vengono aggiornate alle versioni SNAPSHOT
compatibili con Apache Spark 3.0:
- graphframes: 0.7.0-db1-spark2.4 -> 0.8.0-db2-spark3.0
- spark-tensorflow-connector: 1.15.0 (Scala 2.11) -> 1.15.0 (Scala 2.12)
- xgboost4j and xgboost4j-spark: 0.90 -> 1.0.0
- mleap-databricks-runtime: 0.17.0-4882dc3 (SNAPSHOT)
Vengono rimossi i pacchetti seguenti:
- TensorFlow (Java)
- TensorFrames
- Pipeline di Deep Learning per Apache Spark (HorovodRunner è disponibile in Python)
Aggiunta di comandi conda e pip per supportare le librerie Python con ambito Notebook (anteprima pubblica)
A partire da Databricks Runtime 7.0 ML, è possibile usare i comandi %pip
e %conda
per gestire le librerie Python installate in una sessione di Notebook.
È anche possibile usare questi comandi per creare un ambiente personalizzato per un Notebook e riprodurre questo ambiente tra Notebook.
Per abilitare questa funzionalità, nelle impostazioni del cluster impostare la configurazione di Spark spark.databricks.conda.condaMagic.enabled true
.
Per altre informazioni, vedere Librerie Python con ambito Notebook.
Deprecazioni e funzionalità non supportate
Databricks Runtime 7.0 ML non supporta il controllo di accesso alle tabelle. Se è necessario il controllo di accesso alle tabelle, è consigliabile usare Databricks Runtime 7.0.
Problemi noti
- Se si registra un modello MLlib in formato mleap, quando l'argomento
sample_input
viene passato amlflow.spark.log_model
, tale modello ha esito non riuscito con attributeError. Questo problema è causato da una modifica dell'API a mleap. Per risolvere questo problema, eseguire l'aggiornamento a MLflow 1.9.0. È possibile installare MLflow 1.9.0 usando le librerie Python con ambito Notebook.
Ambiente di sistema
L'ambiente di sistema in Databricks Runtime 7.0 ML differisce da Databricks Runtime 7.0 come indicato di seguito:
- DBUtils: Databricks Runtime ML non contiene l'utilità libreria (dbutils.library) (legacy).
È possibile usare i comandi
%pip
e%conda
. Vedere Librerie Python con ambito notebook. - Per i cluster GPU, le librerie GPU NVIDIA seguenti:
- CUDA 10.1 Update 2
- cuDNN 7.6.5
- NCCL 2.7.3
- TensorRT 6.0.1
Librerie
Le sezioni seguenti elencano le librerie incluse in Databricks Runtime 7.0 ML che differiscono da quelle incluse in Databricks Runtime 7.0.
Contenuto della sezione:
Librerie di livello superiore
Databricks Runtime 7.0 ML include le librerie di livello superiore seguenti:
- GraphFrames
- Horovod e HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Librerie Python
Databricks Runtime 7.0 ML usa Conda per la gestione dei pacchetti Python e include molti dei pacchetti ML più diffusi. La sezione seguente descrive l'ambiente Conda per Databricks Runtime 7.0 ML.
Python nei cluster CPU
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_1
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2020.1.1=0
- cachetools=4.1.0=py_1
- certifi=2020.4.5.1=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.3.0=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.8=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb2=2.0.6=py_0
- gitpython=3.0.5=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py37_0
- jedi=0.14.1=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.9.4=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_0
- ninja=1.9.0=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1g=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.5.2=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.5.2=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.7=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py37_0
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_0
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.5.0=py3.7_cpu_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_0
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap2=2.0.5=py37_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.6.0=py37_cpu
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- databricks-cli==0.11.0
- diskcache==4.1.0
- docker==4.2.1
- gorilla==0.3.0
- horovod==0.19.1
- hyperopt==0.2.4.db1
- keras-preprocessing==1.1.2
- mleap==0.16.0
- mlflow==1.8.0
- opt-einsum==3.2.1
- petastorm==0.9.2
- pyarrow==0.15.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- sparkdl==2.1.0-db1
- tensorboard==2.2.2
- tensorboard-plugin-wit==1.6.0.post3
- tensorflow-cpu==2.2.0
- tensorflow-estimator==2.2.0
- termcolor==1.1.0
- xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml
Python nei cluster GPU
name: databricks-ml-gpu
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_1
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2020.1.1=0
- cachetools=4.1.0=py_1
- certifi=2020.4.5.2=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.3.0=py_0
- configparser=3.7.4=py37_0
- cryptography=2.8=py37h1ba5d50_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb2=2.0.6=py_0
- gitpython=3.0.5=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py37_0
- jedi=0.14.1=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.9.4=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_0
- ninja=1.9.0=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1g=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.5.2=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.5.2=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.7=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py37_0
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_0
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.5.0=py3.7_cuda10.1.243_cudnn7.6.3_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_0
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap2=2.0.5=py37_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.6.0=py37_cu101
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- databricks-cli==0.11.0
- diskcache==4.1.0
- docker==4.2.1
- gorilla==0.3.0
- horovod==0.19.1
- hyperopt==0.2.4.db1
- keras-preprocessing==1.1.2
- mleap==0.16.0
- mlflow==1.8.0
- opt-einsum==3.2.1
- petastorm==0.9.2
- pyarrow==0.15.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- sparkdl==2.1.0-db1
- tensorboard==2.2.2
- tensorboard-plugin-wit==1.6.0.post3
- tensorflow-estimator==2.2.0
- tensorflow-gpu==2.2.0
- termcolor==1.1.0
- xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml-gpu
Pacchetti Spark contenenti moduli Python
Pacchetti Spark | Modulo Python | Versione |
---|---|---|
GraphFrames | graphframes | 0.8.0-db2-spark3.0 |
Librerie R
Le librerie R sono identiche alle librerie R in Databricks Runtime 7.0 Beta.
Librerie Java e Scala (cluster Scala 2.12)
Oltre alle librerie Java e Scala in Databricks Runtime 7.0, Databricks Runtime 7.0 ML contiene i file JAR seguenti:
ID gruppo | ID artefatto | Versione |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.0-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.0.0 |
ml.dmlc | xgboost4j_2.12 | 1.0.0 |
org.mlflow | mlflow-client | 1.8.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |