Analizzare i dati di monitoraggio del database watcher (anteprima)
Si applica a: Database SQL di Azure Istanza gestita di SQL di Azure
Oltre a usare i dashboard del portale di Azure o creare visualizzazioni per visualizzare e analizzare i dati di SQL Monitoring in Power BI, Grafana, Esplora dati di Azure o Analisi in tempo reale in Microsoft Fabric, è possibile eseguire query direttamente sull'archivio dati di monitoraggio.
Questo articolo contiene esempi di query KQL e T-SQL che consentono di iniziare ad analizzare i dati di monitoraggio raccolti.
Usare KQL per analizzare i dati di monitoraggio
Per analizzare i dati di monitoraggio raccolti, il metodo consigliato consiste nell'usare il Linguaggio di query Kusto (KQL). KQL è ottimale per l'esecuzione di query su dati di telemetria, metriche e log. Offre un ampio supporto per la ricerca testuale e l'analisi, gli operatori e le funzioni di serie temporali, l'analisi e l'aggregazione e molti altri costrutti del linguaggio che facilitano l'analisi dei dati.
KQL è concettualmente simile a SQL. Opera su entità dello schema, come tabelle e colonne, e supporta operazioni relazionali come progetto, limitazione, join e riepilogo, corrispondenti alle clausole SELECT
, JOIN
, WHERE
e GROUP BY
in SQL.
Per scrivere ed eseguire query KQL, è possibile usare Kusto Explorer o l'interfaccia utente Web di Esplora dati di Azure. Kusto Explorer è un software desktop Windows completo, mentre l'interfaccia utente Web di Esplora dati di Azure consente di eseguire query KQL e visualizzare i risultati nel browser, in qualsiasi piattaforma.
È possibile usare questi strumenti anche per eseguire query su un database in Analisi in tempo reale in Microsoft Fabric. Per connettersi, aggiungere una nuova connessione usando l'URI query del database di Analisi in tempo reale. Inoltre, se si usa Analisi in tempo reale, è possibile analizzare i dati di monitoraggio tramite i set di query KQL. Un set di query KQL può essere salvato come artefatto Fabric condivisibile e usato per creare report di Power BI.
Se non si ha una versione di KQL, le risorse seguenti possono essere utili per iniziare:
- Scrivere la prima query con il linguaggio di query Kusto
- Avvio rapido: Eseguire query sui dati di esempio
- Esercitazione: Informazioni sugli operatori comuni
Gli esempi seguenti consentono di scrivere query KQL personalizzate per visualizzare e analizzare i dati di monitoraggio SQL raccolti. È possibile usare questi esempi anche come punto di partenza per la creazione di visualizzazioni dati e dashboard personalizzati.
Usare KQL per eseguire query sull'utilizzo delle risorse nel tempo
In questo esempio la query restituisce le metriche relative al consumo di risorse (CPU, ruoli di lavoro, velocità effettiva di scrittura log e così via) per la replica primaria di un database, un pool elastico o un'istanza gestita di SQL nell'ultima ora. Oltre a restituire il set di risultati, lo visualizza come grafico temporale.
In questo e in altri esempi, modificare le variabili nelle istruzioni let in modo che corrispondano ai nomi del server, del database, del pool elastico o dell'istanza gestita di SQL. Per usare un intervallo di tempo diverso, modificare la variabile duration
. Per altre informazioni, vedere Valori letterali intervallo di tempo.
let logicalServer = @"your-server-name";
let databaseName = @"your-database-name";
let replicaType = "Primary";
let duration = 1h;
sqldb_database_resource_utilization
| where sample_time_utc > ago(duration)
| where logical_server_name =~ logicalServer
| where database_name =~ databaseName
| where replica_type =~ replicaType
| project sample_time_utc,
avg_cpu_percent,
avg_instance_cpu_percent,
avg_data_io_percent,
avg_log_write_percent,
max_worker_percent
| sort by sample_time_utc desc
| render timechart;
Usare KQL per visualizzare le proprietà del database, del pool elastico o dell'istanza gestita di SQL
In questo esempio, la query restituisce l’insieme di tutti i database, i pool elastici o le istanze gestite di SQL da cui è stato raccolto almeno un esempio nel set di dati Proprietà corrispondente nell'ultimo giorno. In altre parole, ogni riga rappresenta una destinazione di monitoraggio con le proprietà osservate più di recente.
La funzione arg_max() aggrega i dati per restituire la riga più recente per il set specificato di colonne che identificano una destinazione. Ad esempio, per i database SQL di Azure, questo set è logical_server_name
, database_name
, replica_type
.
let duration = 1d;
sqldb_database_properties
| where sample_time_utc > ago(duration)
| summarize arg_max(sample_time_utc, *) by logical_server_name, database_name, replica_type
| project-rename last_sample_time_utc = sample_time_utc
| sort by tolower(logical_server_name) asc,
tolower(database_name) asc,
case(
replica_type == "Primary", 0,
replica_type == "Geo-replication forwarder", 1,
replica_type == "Named secondary", 2,
replica_type == "HA secondary", 3,
4) asc;
Usare KQL per visualizzare query sulle statistiche di runtime
Questa query restituisce le prime query di utilizzo di risorse nell'ambiente Azure SQL. Modificare una variabile in modo da classificare le query in base a qualsiasi metrica Query Store, tra cui tempo CPU, tempo trascorso, numero di esecuzioni e così via. È inoltre possibile impostare variabili per filtrare in base a un intervallo di tempo, al tipo di esecuzione della query e al testo della query. Impostare le variabili per concentrarsi su un server logico specifico, su un pool elastico, su un'istanza gestita di SQL o su un database.
La query usa il set di dati statistiche di runtime delle query per restituire il numero delle prime query specificate e include la relativa classificazione in base a ogni altra metrica di consumo delle risorse.
let topQueriesBy = "cpu_time"; // Set to one of the following metrics to return the top resource consuming queries:
// count_executions, duration, cpu_time, logical_io_reads, logical_io_writes, physical_io_reads,
// num_physical_io_reads, clr_time, dop, query_max_used_memory, rowcount, log_bytes_used, tempdb_space_used
let topQueries = 10; // Set the number of top queries to return
let endTime = now();
let startTime = endTime - 1d;
let logicalServerName = @""; // Optionally filter by logical server name
let elasticPoolName = @""; // Optionally filter by elastic pool name, if any databases are in elastic pools
let databaseName = @""; // Optionally filter by database name
let executionType = ""; // Optionally filter by execution type. Use Regular, Aborted, Exception.
let queryHash = ""; // Optionally filter by query hash (example: 0xBAAA461A6C93EA88)
let queryTextFragment = ""; // Optionally filter by a query text fragment
sqldb_database_query_runtime_stats
| where interval_start_time >= startTime and interval_end_time <= endTime
| where isempty(executionType) or execution_type_desc =~ executionType
| where isempty(logicalServerName) or logical_server_name =~ logicalServerName
| where isempty(elasticPoolName) or elastic_pool_name =~ elasticPoolName
| where isempty(databaseName) or database_name =~ databaseName
| summarize dcount_logical_servers = dcount(logical_server_name),
any_logical_server_name = take_any(logical_server_name),
dcount_elastic_pools = dcount(strcat(logical_server_name, "|", elastic_pool_name)),
any_elastic_pool_name = take_any(elastic_pool_name),
dcount_databases = dcount(strcat(logical_server_name, "|", database_name)),
any_database_name = take_any(database_name),
dcount_sql_module_name = dcount(sql_module_name),
any_sql_module_name = take_any(sql_module_name),
dcount_context_settings_id = dcount(context_settings_id),
any_context_settings_id = take_any(context_settings_id),
query_sql_text = take_any(query_sql_text),
count_executions = sum(toreal(count_executions)),
count_successful_executions = sumif(toreal(count_executions), execution_type_desc == "Regular"),
count_aborted_executions = sumif(toreal(count_executions), execution_type_desc == "Aborted"),
count_exception_executions = sumif(toreal(count_executions), execution_type_desc == "Exception"),
duration_us = sum(avg_duration_us * count_executions),
cpu_time_us = sum(avg_cpu_time_us * count_executions),
logical_io_reads = sum(avg_logical_io_reads * count_executions),
logical_io_writes = sum(avg_logical_io_writes * count_executions),
physical_io_reads = sum(avg_physical_io_reads * count_executions),
num_physical_io_reads = sum(avg_num_physical_io_reads * count_executions),
clr_time_us = sum(avg_clr_time_us * count_executions),
dop = sumif(avg_dop * count_executions, is_parallel_plan),
query_max_used_memory = sum(avg_query_max_used_memory * count_executions),
rowcount = sum(avg_rowcount * count_executions),
log_bytes_used = sum(avg_log_bytes_used * count_executions),
tempdb_space_used = sum(avg_tempdb_space_used * count_executions)
by query_hash
| project logical_server_name = iif(dcount_logical_servers == 1, any_logical_server_name, strcat(any_logical_server_name, " (+", tostring(dcount_logical_servers - 1), ")")),
elastic_pool_name = iif(dcount_elastic_pools == 1, any_elastic_pool_name, strcat(any_elastic_pool_name, " (+", tostring(dcount_elastic_pools - 1), ")")),
database_name = iif(dcount_databases == 1, any_database_name, strcat(any_database_name, " (+", tostring(dcount_databases - 1), ")")),
query_sql_text,
count_executions,
count_successful_executions,
count_aborted_executions,
count_exception_executions,
duration_us,
cpu_time_us,
logical_io_reads,
logical_io_writes,
physical_io_reads,
num_physical_io_reads,
clr_time_us,
dop,
query_max_used_memory_kb = query_max_used_memory * 8,
rowcount,
log_bytes_used,
tempdb_space_used_kb = tempdb_space_used * 8,
sql_module_name = iif(dcount_sql_module_name == 1, any_sql_module_name, strcat(any_sql_module_name, " (+", tostring(dcount_sql_module_name - 1), ")")),
context_settings_id = iif(dcount_context_settings_id == 1, tostring(any_context_settings_id), strcat(any_context_settings_id, " (+", tostring(dcount_context_settings_id - 1), ")")),
query_hash
| sort by count_executions desc | extend count_executions_rank = row_rank_dense(count_executions)
| sort by duration_us desc | extend duration_rank = row_rank_dense(duration_us)
| sort by cpu_time_us desc | extend cpu_time_rank = row_rank_dense(cpu_time_us)
| sort by logical_io_reads desc | extend logical_io_reads_rank = row_rank_dense(logical_io_reads)
| sort by logical_io_writes desc | extend logical_io_writes_rank = row_rank_dense(logical_io_writes)
| sort by physical_io_reads desc | extend physical_io_reads_rank = row_rank_dense(physical_io_reads)
| sort by num_physical_io_reads desc | extend num_physical_io_reads_rank = row_rank_dense(num_physical_io_reads)
| sort by clr_time_us desc | extend clr_time_rank = row_rank_dense(clr_time_us)
| sort by dop desc | extend dop_rank = row_rank_dense(dop)
| sort by query_max_used_memory_kb desc | extend query_max_used_memory_rank = row_rank_dense(query_max_used_memory_kb)
| sort by rowcount desc | extend rowcount_rank = row_rank_dense(rowcount)
| sort by log_bytes_used desc | extend log_bytes_used_rank = row_rank_dense(log_bytes_used)
| sort by tempdb_space_used_kb desc | extend tempdb_space_used_rank = row_rank_dense(tempdb_space_used_kb)
| sort by case(
topQueriesBy =~ "count_executions", toreal(count_executions),
topQueriesBy =~ "duration", toreal(duration_us),
topQueriesBy =~ "cpu_time", toreal(cpu_time_us),
topQueriesBy =~ "logical_io_reads", toreal(logical_io_reads),
topQueriesBy =~ "logical_io_writes", toreal(logical_io_writes),
topQueriesBy =~ "physical_io_reads", toreal(physical_io_reads),
topQueriesBy =~ "num_physical_io_reads", toreal(num_physical_io_reads),
topQueriesBy =~ "clr_time", toreal(clr_time_us),
topQueriesBy =~ "dop", toreal(dop),
topQueriesBy =~ "query_max_used_memory", toreal(query_max_used_memory_kb),
topQueriesBy =~ "rowcount", toreal(rowcount),
topQueriesBy =~ "log_bytes_used", toreal(log_bytes_used),
topQueriesBy =~ "tempdb_space_used", toreal(tempdb_space_used_kb),
real(null)
) desc,
count_executions desc
| project-away count_executions
| where isempty(queryHash) or query_hash == queryHash
| where isempty(queryTextFragment) or query_sql_text contains queryTextFragment
| take topQueries;
Usare KQL per analizzare i contatori delle prestazioni nel tempo
In questo esempio, la query restituisce i valori del contatore delle prestazioni per un intervallo di tempo che inizia 30 minuti prima dell'ora di fine specificata.
In questo esempio vengono usati contatori delle prestazioni cumulativi, ad esempio Total request count
e Query optimizations/sec
. Il termine cumulativo indica che il valore del contatore continua ad aumentare man mano che si verifica un'attività di query SQL. La query di questo esempio calcola la differenza, o delta, tra il valore del contatore di ogni campione e il relativo valore del campione precedente per ottenere il numero di richieste e ottimizzazioni che si sono verificate dopo il campione precedente, quindi visualizza queste metriche in un grafico temporale.
let logicalServer = @"your-server-name";
let databaseName = @"your-database-name";
let replicaType = "Primary";
let endTime = datetime("2023-12-19 22:10:00");
let startTime = endTime - 30m;
sqldb_database_performance_counters_common
| where sample_time_utc between (startTime .. endTime)
| where logical_server_name =~ logicalServer
| where database_name =~ databaseName
| where replica_type =~ replicaType
| where cntr_type == 272696576 // restrict to cumulative counters
| where object_name =~ "Workload Group Stats" and counter_name in ("Total request count","Query optimizations/sec")
| project replica_id, sample_time_utc, object_name, counter_name, cntr_value
| sort by replica_id asc, counter_name asc, sample_time_utc asc
| extend delta_cntr_value = iif(cntr_value >= prev(cntr_value) and counter_name == prev(counter_name) and replica_id == prev(replica_id), cntr_value - prev(cntr_value), real(null)),
delta_sample_time_utc = iif(sample_time_utc >= prev(sample_time_utc), datetime_diff("Millisecond", sample_time_utc, prev(sample_time_utc)), long(null))
| where isnotempty(delta_sample_time_utc)
| extend value = delta_cntr_value / delta_sample_time_utc * 1000
| summarize requests_per_sec = take_anyif(value, counter_name =~ "Total request count"),
query_optimizations_per_sec = take_anyif(value, counter_name =~ "Query optimizations/sec")
by sample_time_utc
| sort by sample_time_utc desc
| project sample_time_utc, requests_per_sec, query_optimizations_per_sec
| render timechart;
L'esempio seguente è relativo ai contatori delle prestazioni temporizzati che segnalano il valore osservato più di recente, ad esempio Active memory grants count
, Pending memory grants count
e Processes blocked
. L'intervallo di tempo equivale agli ultimi 30 minuti.
let logicalServer = @"your-server-name";
let databaseName = @"your-database-name";
let replicaType = "Primary";
let duration = 30m;
sqldb_database_performance_counters_common
| where sample_time_utc > ago(duration)
| where logical_server_name =~ logicalServer
| where database_name =~ databaseName
| where replica_type =~ replicaType
| where cntr_type == 65792 // restrict to point-in-time counters
| where (object_name =~ "General Statistics" and counter_name in ("Processes blocked"))
or
(object_name =~ "Resource Pool Stats" and counter_name in ("Active memory grants count","Pending memory grants count"))
| project sample_time_utc, counter_name, cntr_value
| render timechart;
L'esempio seguente usa il set di dati Contatori delle prestazioni (dettagliato) per tracciare l'utilizzo della CPU per i pool di risorse interne e utente e i gruppi di carico di lavoro in database SQL di Azure. Per altre informazioni, vedi Utilizzo delle risorse per carichi di lavoro utente e processi interni.
I carichi di lavoro utente vengono eseguiti nei pool di risorse SloSharedPool1
o UserPool
, mentre tutti gli altri pool di risorse vengono usati per vari carichi di lavoro di sistema.
Analogamente, i carichi di lavoro utente vengono eseguiti nei gruppi di carico di lavoro denominati a partire da UserPrimaryGroup.DBId
, mentre tutti gli altri gruppi di carico di lavoro vengono usati per vari carichi di lavoro di sistema. Ad esempio, le query di monitoraggio del watcher del database vengono eseguite nel gruppo di carico di lavoro SQLExternalMonitoringGroup
.
let logicalServer = @"your-server-name";
let databaseName = @"your-database-name";
let replicaType = "Primary";
let endTime = datetime("2023-12-19 22:10:00");
let startTime = endTime - 30m;
sqldb_database_performance_counters_detailed
| where sample_time_utc between (startTime .. endTime)
| where logical_server_name =~ logicalServer
| where database_name =~ databaseName
| where replica_type =~ replicaType
| where cntr_type == 537003264 // restrict to ratio percentage counters
| where object_name =~ "Resource Pool Stats" and counter_name in ("CPU usage %")
| project sample_time_utc, resource_pool = instance_name, cpu_percentage = cntr_value
| render timechart;
let logicalServer = @"your-server-name";
let databaseName = @"your-database-name";
let replicaType = "Primary";
let endTime = datetime("2023-12-19 22:10:00");
let startTime = endTime - 30m;
sqldb_database_performance_counters_detailed
| where sample_time_utc between (startTime .. endTime)
| where logical_server_name =~ logicalServer
| where database_name =~ databaseName
| where replica_type =~ replicaType
| where cntr_type == 537003264 // restrict to ratio percentage counters
| where object_name =~ "Workload Group Stats" and counter_name in ("CPU usage %")
| project sample_time_utc, workload_group = instance_name, cpu_percentage = cntr_value
| render timechart;
Usare KQL per analizzare le attese cumulative nel tempo
Questo esempio illustra come creare un grafico dei principali tipi di attesa SQL in un intervallo di tempo. La query calcola il tempo di attesa cumulativo per ogni tipo di attesa, espresso in millisecondi al secondo di tempo trascorso. È possibile modificare le variabili di query per impostare l'ora di inizio e di fine dell'intervallo, il numero di tipi di attesa principali da includere e il passaggio tra i punti dati del grafico.
La query usa due tecniche per migliorare le prestazioni:
- L'operatore KQL di partizione con la strategia
shuffle
per distribuire l'elaborazione delle query su più nodi del cluster, se presenti. - La funzione materialize() per salvare in modo permanente un set di risultati intermedio, riutilizzato per calcolare le attese principali e per la creazione della serie temporale da tracciare.
let logicalServer = @"your-server-name";
let databaseName = @"your-database-name";
let replicaType = "Primary";
let endTime = datetime("2023-12-19 22:10:00");
let startTime = endTime - 30m;
let top_wait_types = 10;
let chart_step = 30s;
let wait_type_sample = materialize (
sqldb_database_wait_stats
| where sample_time_utc between (startTime .. endTime)
| where logical_server_name =~ logicalServer
| where database_name =~ databaseName
| where replica_type =~ replicaType
| project replica_id, sample_time_utc, wait_type, wait_time_ms
| partition hint.strategy=shuffle by wait_type
(
sort by replica_id asc, sample_time_utc asc
| extend delta_wait_time_ms = iif(wait_time_ms >= prev(wait_time_ms) and replica_id == prev(replica_id), wait_time_ms - prev(wait_time_ms), long(null)),
delta_sample_time_utc = iif(sample_time_utc >= prev(sample_time_utc), datetime_diff("Millisecond", sample_time_utc, prev(sample_time_utc)), long(null))
| where isnotempty(delta_sample_time_utc)
| extend wait_ms_per_s = toreal(delta_wait_time_ms) / delta_sample_time_utc * 1000
| project sample_time_utc, wait_type, wait_ms_per_s
)
);
let top_wait = (
wait_type_sample
| summarize total_wait_ms_per_s = sum(wait_ms_per_s) by wait_type
| top top_wait_types by total_wait_ms_per_s desc
| project-away total_wait_ms_per_s
);
wait_type_sample
| join kind=inner top_wait on wait_type
| project-away wait_type1
| make-series wait_ms_per_s = avgif(wait_ms_per_s, isfinite(wait_ms_per_s)) default = long(null) on sample_time_utc from startTime to endTime step chart_step by wait_type
| project wait_type, sample_time_utc, wait_ms_per_s
| render timechart;
Usare T-SQL per analizzare i dati di monitoraggio
Se si ha già familiarità con T-SQL, è possibile iniziare subito a eseguire query e analizzare i dati di monitoraggio SQL senza dover apprendere il funzionamento di KQL. Tuttavia, KQL è il linguaggio consigliato per l'esecuzione di query sui dati in Esplora dati di Azure o Analisi in tempo reale, perché offre un supporto senza precedenti per l'esecuzione di query sui dati di telemetria.
È possibile connettersi al database di Analisi in tempo reale o Esplora dati di Azure da SQL Server Management Studio (SSMS), Azure Data Studio e altri strumenti comuni. È possibile eseguire query su un database di Esplora dati di Azure o KQL come se fosse un database SQL Server o SQL di Azure. Per altre informazioni, vedere Eseguire query sui dati in Esplora dati di Azure usando l'emulazione SQL Server.
Nota
Non tutti i costrutti T-SQL sono supportati in Esplora dati di Azure e Analisi in tempo reale. Per informazioni dettagliate, vedere Eseguire query sui dati con T-SQL.
La scheda di riferimento rapido SQL per il linguaggio di query Kusto consente di convertire le query T-SQL in KQL, se si ritiene che il supporto T-SQL non sia sufficiente per le proprie esigenze o se si desidera convertire le query T-SQL in KQL per usare le funzionalità analitiche avanzate.
Gli esempi seguenti illustrano come eseguire query sui dati di monitoraggio nell'archivio dati del watcher del database usando T-SQL.
Usare T-SQL per analizzare l'utilizzo delle risorse nel tempo
In questo esempio la query restituisce le metriche relative al consumo di risorse (CPU, ruoli di lavoro, velocità effettiva di scrittura log e così via) per la replica primaria di un database, un pool elastico o un'istanza gestita di SQL nell'ultima ora.
In questo e in altri esempi, modificare le variabili nell’istruzione DECLARE
in modo che corrispondano ai nomi del server, del database, del pool elastico o dell'istanza gestita di SQL.
DECLARE @LogicalServerName sysname = 'your-server-name',
@DatabaseName sysname = 'your-database-name',
@ReplicaType sysname = 'Primary',
@DurationMinutes int = 60;
SELECT sample_time_utc,
avg_cpu_percent,
avg_instance_cpu_percent,
avg_data_io_percent,
avg_log_write_percent,
max_worker_percent
FROM sqldb_database_resource_utilization
WHERE sample_time_utc > DATEADD(minute, -@DurationMinutes, SYSUTCDATETIME())
AND
logical_server_name = @LogicalServerName
AND
database_name = @DatabaseName
AND
replica_type = @ReplicaType
ORDER BY sample_time_utc DESC;
Usare T-SQL per visualizzare le proprietà del database, del pool elastico o dell'istanza gestita di SQL
In questo esempio, la query restituisce l’insieme di tutti i database, i pool elastici o le istanze gestite di SQL da cui è stato raccolto almeno un esempio nel set di dati Proprietà corrispondente nelle ultime 24 ore. In altre parole, ogni riga rappresenta una destinazione di monitoraggio con le proprietà osservate più di recente.
DECLARE @DurationHours int = 24;
SELECT p.sample_time_utc,
p.logical_server_name,
p.database_name,
p.replica_type,
p.database_id,
p.elastic_pool_name,
p.service_tier,
p.service_level_objective,
p.logical_cpu_count,
p.database_engine_memory_mb,
p.compatibility_level,
p.updateability,
p.database_engine_build_time,
p.database_engine_start_time_utc
FROM sqldb_database_properties AS p
INNER JOIN (
SELECT logical_server_name,
database_name,
replica_type,
MAX(sample_time_utc) AS last_sample_time_utc
FROM sqldb_database_properties
WHERE sample_time_utc > DATEADD(hour, -@DurationHours, SYSUTCDATETIME())
GROUP BY logical_server_name,
database_name,
replica_type
) AS ls
ON p.logical_server_name = ls.logical_server_name
AND
p.database_name = ls.database_name
AND
p.replica_type = ls.replica_type
AND
p.sample_time_utc = ls.last_sample_time_utc
WHERE p.sample_time_utc > DATEADD(hour, -@DurationHours, SYSUTCDATETIME())
ORDER BY LOWER(logical_server_name) ASC,
LOWER(database_name) ASC,
CASE replica_type
WHEN 'Primary' THEN 0
WHEN 'Geo-replication forwarder' THEN 1
WHEN 'Named secondary' THEN 2
WHEN 'HA secondary' THEN 3
END ASC;
Usare T-SQL per visualizzare la query sulle statistiche di runtime
Questa query restituisce le prime query di utilizzo di risorse nell'ambiente Azure SQL. Modificare la variabile @TopQueriesBy
per trovare le query principali in base a qualsiasi metrica Query Store, tra cui tempo CPU, tempo trascorso, numero di esecuzioni e così via. È inoltre possibile impostare variabili per filtrare in base a un intervallo di tempo, al tipo di esecuzione di query e all'hash di query di una query specifica, oppure per concentrarsi sui database di un server logico specifico, un pool elastico o un'istanza gestita di SQL.
La query usa il set di dati statistiche di runtime query per restituire le query principali specificate. Restituisce anche la priorità in base a ogni altra metrica di consumo delle risorse.
DECLARE @EndTime datetime2 = SYSUTCDATETIME(),
@StartTime datetime2 = DATEADD(hour, -24, SYSUTCDATETIME()),
/*
Set the next variable to one of the following metrics to return the top resource consuming queries:
executions, cpu_time, duration, logical_io_reads, physical_io_reads, num_physical_io_reads,
clr_time, query_max_used_memory, log_bytes_used, tempdb_space_used, row_count, dop
*/
@TopQueriesBy varchar(30) = 'cpu_time',
@TopQueries int = 10,
@LogicalServerName sysname = '', -- Optionally filter by logical server name
@ElasticPoolName sysname = '', -- Optionally filter by elastic pool name, if any databases are in elastic pools
@DatabaseName sysname = '', -- Optionally filter by database name
@ExecutionType varchar(30) = '', -- Optionally filter by execution type. Use Regular, Aborted, Exception.
@QueryHash varchar(18) = ''; -- Optionally filter by query hash (example: 0xBAAA461A6C93EA88)
SELECT TOP (@TopQueries)
CONCAT(logical_server_name, IIF(count_logical_servers > 1, CONCAT(' (+', CAST(count_logical_servers - 1 AS varchar(11)), ')'), '')) AS logical_server_name,
CONCAT(database_name, IIF(count_databases > 1, CONCAT(' (+', CAST(count_databases - 1 AS varchar(11)), ')'), '')) AS database_name,
query_sql_text,
CONCAT(CAST(query_id AS varchar(11)), IIF(count_queries > 1, CONCAT(' (+', CAST(count_queries - 1 AS varchar(11)), ')'), '')) AS query_id,
CONCAT(CAST(plan_id AS varchar(11)), IIF(count_plans > 1, CONCAT(' (+', CAST(count_plans - 1 AS varchar(11)), ')'), '')) AS plan_id,
regular_executions,
aborted_executions,
exception_executions,
cpu_time_us,
duration_us,
logical_io_reads,
physical_io_reads,
num_physical_io_reads,
clr_time_us,
query_max_used_memory_kb,
log_bytes_used,
tempdb_space_used_kb,
row_count,
dop,
query_hash,
executions_rank,
cpu_time_rank,
duration_rank,
logical_io_reads_rank,
physical_io_reads_rank,
num_physical_io_reads_rank,
clr_time_rank,
query_max_used_memory_rank,
log_bytes_used_rank,
tempdb_space_used_rank,
row_count_rank,
dop_rank
FROM (
SELECT *,
DENSE_RANK() OVER (ORDER BY executions DESC) AS executions_rank,
DENSE_RANK() OVER (ORDER BY cpu_time_us DESC) AS cpu_time_rank,
DENSE_RANK() OVER (ORDER BY duration_us DESC) AS duration_rank,
DENSE_RANK() OVER (ORDER BY logical_io_reads DESC) AS logical_io_reads_rank,
DENSE_RANK() OVER (ORDER BY physical_io_reads DESC) AS physical_io_reads_rank,
DENSE_RANK() OVER (ORDER BY num_physical_io_reads DESC) AS num_physical_io_reads_rank,
DENSE_RANK() OVER (ORDER BY clr_time_us DESC) AS clr_time_rank,
DENSE_RANK() OVER (ORDER BY query_max_used_memory_kb DESC) AS query_max_used_memory_rank,
DENSE_RANK() OVER (ORDER BY log_bytes_used DESC) AS log_bytes_used_rank,
DENSE_RANK() OVER (ORDER BY tempdb_space_used_kb DESC) AS tempdb_space_used_rank,
DENSE_RANK() OVER (ORDER BY row_count DESC) AS row_count_rank,
DENSE_RANK() OVER (ORDER BY dop DESC) AS dop_rank
FROM (
SELECT query_hash,
COUNT(DISTINCT(logical_server_name)) AS count_logical_servers,
MAX(logical_server_name) AS logical_server_name,
COUNT(DISTINCT(database_name)) AS count_databases,
MAX(database_name) AS database_name,
COUNT(DISTINCT(query_id)) AS count_queries,
MAX(query_id) AS query_id,
COUNT(DISTINCT(plan_id)) AS count_plans,
MAX(plan_id) AS plan_id,
MAX(query_sql_text) AS query_sql_text,
SUM(IIF(execution_type_desc = 'Regular', count_executions, 0)) AS regular_executions,
SUM(IIF(execution_type_desc = 'Aborted', count_executions, 0)) AS aborted_executions,
SUM(IIF(execution_type_desc = 'Exception', count_executions, 0)) AS exception_executions,
SUM(count_executions) AS executions,
SUM(avg_cpu_time_us * count_executions) AS cpu_time_us,
SUM(avg_duration_us * count_executions) AS duration_us,
SUM(avg_logical_io_reads * count_executions) AS logical_io_reads,
SUM(avg_physical_io_reads * count_executions) AS physical_io_reads,
SUM(avg_num_physical_io_reads * count_executions) AS num_physical_io_reads,
SUM(avg_clr_time_us * count_executions) AS clr_time_us,
SUM(avg_query_max_used_memory * count_executions) * 8 AS query_max_used_memory_kb,
SUM(avg_log_bytes_used * count_executions) AS log_bytes_used,
SUM(avg_tempdb_space_used * count_executions) * 8 AS tempdb_space_used_kb,
SUM(avg_rowcount * count_executions) AS row_count,
SUM(IIF(is_parallel_plan = 1, avg_dop * count_executions, NULL)) AS dop
FROM sqldb_database_query_runtime_stats
WHERE interval_start_time >= @StartTime AND interval_end_time <= @EndTime
AND
(@ExecutionType = '' OR LOWER(execution_type_desc) = LOWER(@ExecutionType))
AND
(@LogicalServerName = '' OR LOWER(logical_server_name) = LOWER(@LogicalServerName))
AND
(@ElasticPoolName = '' OR LOWER(elastic_pool_name) = LOWER(@ElasticPoolName))
AND
(@DatabaseName = '' OR LOWER(database_name) = LOWER(@DatabaseName))
GROUP BY query_hash
) AS rsa
) AS rsar
WHERE @QueryHash = '' OR LOWER(query_hash) = LOWER(@QueryHash)
ORDER BY CASE @TopQueriesBy
WHEN 'executions' THEN executions_rank
WHEN 'cpu_time' THEN cpu_time_rank
WHEN 'duration' THEN duration_rank
WHEN 'logical_io_reads' THEN logical_io_reads_rank
WHEN 'physical_io_reads' THEN physical_io_reads_rank
WHEN 'num_physical_io_reads' THEN num_physical_io_reads_rank
WHEN 'clr_time' THEN clr_time_rank
WHEN 'query_max_used_memory' THEN query_max_used_memory_rank
WHEN 'log_bytes_used' THEN log_bytes_used_rank
WHEN 'tempdb_space_used' THEN tempdb_space_used_rank
WHEN 'row_count' THEN row_count_rank
WHEN 'dop' THEN dop_rank
END ASC;
Usare T-SQL per analizzare i contatori delle prestazioni nel tempo
In questo esempio, la query restituisce i valori dei contatori delle prestazioni relativi agli ultimi 30 minuti.
In questo esempio vengono usati contatori delle prestazioni cumulativi, ad esempio Total request count
e Query optimizations/sec
. Il termine cumulativo indica che il valore del contatore continua ad aumentare man mano che si verifica un'attività di query. La query usa la funzione di analisi LAG() per calcolare la differenza, o delta, tra il valore del contatore di ogni campione e il relativo valore del campione precedente per ottenere il numero di richieste e ottimizzazioni che si sono verificate dopo il campione precedente.
DECLARE @LogicalServerName sysname = 'your-server-name',
@DatabaseName sysname = 'your-database-name',
@ReplicaType sysname = 'Primary',
@DurationMinutes int = 30;
SELECT sample_time_utc,
SUM(IIF(
counter_name = 'Total request count',
CAST((cntr_value - prev_cntr_value) AS decimal) / DATEDIFF(millisecond, prev_sample_time_utc, sample_time_utc) * 1000,
NULL
)) AS requests_per_second,
SUM(IIF(
counter_name = 'Query optimizations/sec',
CAST((cntr_value - prev_cntr_value) AS decimal) / DATEDIFF(millisecond, prev_sample_time_utc, sample_time_utc) * 1000,
NULL
)) AS query_optimizations_per_second
FROM (
SELECT sample_time_utc,
LAG(sample_time_utc) OVER (PARTITION BY replica_id, object_name, counter_name ORDER BY sample_time_utc ASC) AS prev_sample_time_utc,
counter_name,
cntr_value,
LAG(cntr_value) OVER (PARTITION BY replica_id, object_name, counter_name ORDER BY sample_time_utc ASC) AS prev_cntr_value
FROM sqldb_database_performance_counters_common
WHERE sample_time_utc > DATEADD(minute, -@DurationMinutes, SYSUTCDATETIME())
AND
logical_server_name = @LogicalServerName
AND
database_name = @DatabaseName
AND
replica_type = @ReplicaType
AND
cntr_type = 272696576 /* restrict to cumulative counters */
AND
object_name = 'Workload Group Stats'
AND
counter_name IN ('Total request count','Query optimizations/sec')
) AS pc
WHERE cntr_value >= prev_cntr_value
AND
sample_time_utc >= prev_sample_time_utc
GROUP BY sample_time_utc
ORDER BY sample_time_utc DESC;
Usare T-SQL per analizzare i contatori delle prestazioni temporizzati
L'esempio seguente è relativo ai contatori delle prestazioni temporizzati che segnalano il valore osservato più di recente, ad esempio Active memory grants count
, Pending memory grants count
e Processes blocked
.
DECLARE @LogicalServerName sysname = 'your-server-name',
@DatabaseName sysname = 'your-database-name',
@ReplicaType sysname = 'Primary',
@DurationMinutes int = 30;
SELECT sample_time_utc,
SUM(IIF(
counter_name = 'Processes blocked',
cntr_value,
NULL
)) AS processes_blocked,
SUM(IIF(
counter_name = 'Active memory grants count',
cntr_value,
NULL
)) AS active_memory_grants,
SUM(IIF(
counter_name = 'Pending memory grants count',
cntr_value,
NULL
)) AS pending_memory_grants
FROM (
SELECT sample_time_utc,
counter_name,
cntr_value
FROM sqldb_database_performance_counters_common
WHERE sample_time_utc > DATEADD(minute, -@DurationMinutes, SYSUTCDATETIME())
AND
logical_server_name = @LogicalServerName
AND
database_name = @DatabaseName
AND
replica_type = @ReplicaType
AND
cntr_type = 65792 /* restrict to point-in-time counters */
AND
(
(object_name = 'General Statistics' AND counter_name IN ('Processes blocked'))
OR
(object_name = 'Resource Pool Stats' AND counter_name IN ('Active memory grants count','Pending memory grants count'))
)
) AS pc
GROUP BY sample_time_utc
ORDER BY sample_time_utc DESC;
Usare T-SQL per analizzare le attese cumulative nel tempo
In questo esempio, la query restituisce i primi 10 tipi di attesa in base al tempo di attesa cumulativo medio in un intervallo di 30 minuti. Il termine cumulativo indica che la query calcola il tempo totale, in millisecondi, trascorso in attesa in ogni tipo di attesa da tutte le richieste al secondo. Poiché più richieste possono essere eseguite (e possono attendere) contemporaneamente, il tempo di attesa cumulativo in ogni secondo può essere superiore a un secondo.
DECLARE @LogicalServerName sysname = 'your-server-name',
@DatabaseName sysname = 'your-database-name',
@ReplicaType sysname = 'Primary',
@DurationMinutes int = 30;
SELECT TOP (10) wait_type,
SUM(CAST((wait_time_ms - prev_wait_time_ms) AS decimal)) * 1000
/
SUM(DATEDIFF(millisecond, prev_sample_time_utc, sample_time_utc))
AS wait_time_ms_per_sec
FROM (
SELECT sample_time_utc,
LAG(sample_time_utc) OVER (PARTITION BY replica_id, wait_type ORDER BY sample_time_utc ASC) AS prev_sample_time_utc,
wait_type,
wait_time_ms,
LAG(wait_time_ms) OVER (PARTITION BY replica_id, wait_type ORDER BY sample_time_utc ASC) AS prev_wait_time_ms
FROM sqldb_database_wait_stats
WHERE sample_time_utc > DATEADD(minute, -@DurationMinutes, SYSUTCDATETIME())
AND
logical_server_name = @LogicalServerName
AND
database_name = @DatabaseName
AND
replica_type = @ReplicaType
) AS w
WHERE sample_time_utc >= prev_sample_time_utc
AND
wait_time_ms >= prev_wait_time_ms
GROUP BY wait_type
ORDER BY wait_time_ms_per_sec DESC;