LightGbmRankingTrainer Classe
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Pour IEstimator<TTransformer> l’entraînement d’un modèle de classement d’arborescence de décision renforcée à l’aide de LightGBM.
public sealed class LightGbmRankingTrainer : Microsoft.ML.Trainers.LightGbm.LightGbmTrainerBase<Microsoft.ML.Trainers.LightGbm.LightGbmRankingTrainer.Options,float,Microsoft.ML.Data.RankingPredictionTransformer<Microsoft.ML.Trainers.LightGbm.LightGbmRankingModelParameters>,Microsoft.ML.Trainers.LightGbm.LightGbmRankingModelParameters>
type LightGbmRankingTrainer = class
inherit LightGbmTrainerBase<LightGbmRankingTrainer.Options, single, RankingPredictionTransformer<LightGbmRankingModelParameters>, LightGbmRankingModelParameters>
Public NotInheritable Class LightGbmRankingTrainer
Inherits LightGbmTrainerBase(Of LightGbmRankingTrainer.Options, Single, RankingPredictionTransformer(Of LightGbmRankingModelParameters), LightGbmRankingModelParameters)
- Héritage
Remarques
Pour créer ce formateur, utilisez LightGbm ou LightGbm(Options).
Colonnes d’entrée et de sortie
Le type de données des étiquettes d’entrée doit être de type clé ou Single. La valeur de l’étiquette détermine la pertinence, une valeur supérieure indiquant une pertinence plus élevée. Si l’étiquette est un type clé, l’index de clé est la valeur de la pertinence, le plus petit index étant le moins pertinent. Si l’étiquette est un Single, une valeur plus grande indique une pertinence plus élevée. La colonne de caractéristiques doit être un vecteur de taille connue de la colonne de groupe de Single lignes d’entrée et doit être de type clé .
Ce formateur génère les colonnes suivantes :
Nom de colonne de sortie | Type de colonne | Description |
---|---|---|
Score |
Single | Score non lié calculé par le modèle pour déterminer la prédiction. |
Caractéristiques de l’entraîneur
Tâche d’apprentissage automatique | Classement |
La normalisation est-elle requise ? | Non |
La mise en cache est-elle requise ? | Non |
NuGet requis en plus de Microsoft.ML | Microsoft.ML.LightGbm |
Exportable vers ONNX | Non |
Détails de l’algorithme d’apprentissage
LightGBM est une implémentation open source de l’arbre de décision de renforcement de dégradé. Pour plus d’informations sur l’implémentation, consultez la documentation officielle de LightGBM ou ce document.
Consultez la section Voir également pour obtenir des liens vers des exemples d’utilisation.
Champs
FeatureColumn |
Colonne de caractéristique attendue par l’entraîneur. (Hérité de TrainerEstimatorBase<TTransformer,TModel>) |
GroupIdColumn |
Colonne groupID facultative attendue par les formateurs de classement. (Hérité de TrainerEstimatorBaseWithGroupId<TTransformer,TModel>) |
LabelColumn |
Colonne d’étiquette attendue par le formateur. Peut être |
WeightColumn |
Colonne de poids attendue par l’entraîneur. Peut être |
Propriétés
Info |
Pour IEstimator<TTransformer> l’entraînement d’un modèle de classement d’arborescence de décision renforcée à l’aide de LightGBM. (Hérité de LightGbmTrainerBase<TOptions,TOutput,TTransformer,TModel>) |
Méthodes
Fit(IDataView, IDataView) |
Effectue l’apprentissage à LightGbmRankingTrainer l’aide de données d’entraînement et de validation, retourne un RankingPredictionTransformer<TModel>. |
Fit(IDataView) |
Entraîne et retourne un ITransformer. (Hérité de TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Pour IEstimator<TTransformer> l’entraînement d’un modèle de classement d’arborescence de décision renforcée à l’aide de LightGBM. (Hérité de TrainerEstimatorBase<TTransformer,TModel>) |
Méthodes d’extension
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Ajoutez un « point de contrôle de mise en cache » à la chaîne d’estimateur. Cela garantit que les estimateurs en aval seront entraînés par rapport aux données mises en cache. Il est utile d’avoir un point de contrôle de mise en cache avant les formateurs qui prennent plusieurs passes de données. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Étant donné un estimateur, retournez un objet de création de package de package qui appellera un délégué une fois Fit(IDataView) appelé. Il est souvent important pour un estimateur de retourner des informations sur ce qui a été adapté, c’est pourquoi la Fit(IDataView) méthode retourne un objet spécifiquement typé, plutôt que simplement un général ITransformer. Toutefois, en même temps, IEstimator<TTransformer> sont souvent formés en pipelines avec de nombreux objets. Nous pouvons donc avoir besoin de créer une chaîne d’estimateurs via EstimatorChain<TLastTransformer> laquelle l’estimateur pour lequel nous voulons obtenir le transformateur est enterré quelque part dans cette chaîne. Pour ce scénario, nous pouvons par le biais de cette méthode attacher un délégué qui sera appelé une fois l’ajustement appelé. |