Partager via


TimeSeriesCatalog.DetectIidSpike Méthode

Définition

Surcharges

DetectIidSpike(TransformsCatalog, String, String, Double, Int32, AnomalySide)

Créez IidSpikeEstimator, qui prédit des pics dans des séries chronologiques distribuées de manière indépendante (i.i.d.) basées sur des estimations de densité de noyau adaptatives et des scores martingale.

DetectIidSpike(TransformsCatalog, String, String, Int32, Int32, AnomalySide)
Obsolète.

Créez IidSpikeEstimator, qui prédit des pics dans des séries chronologiques distribuées de manière indépendante (i.i.d.) basées sur des estimations de densité de noyau adaptatives et des scores martingale.

DetectIidSpike(TransformsCatalog, String, String, Double, Int32, AnomalySide)

Créez IidSpikeEstimator, qui prédit des pics dans des séries chronologiques distribuées de manière indépendante (i.i.d.) basées sur des estimations de densité de noyau adaptatives et des scores martingale.

public static Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator DetectIidSpike (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int pvalueHistoryLength, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided);
static member DetectIidSpike : Microsoft.ML.TransformsCatalog * string * string * double * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide -> Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator
<Extension()>
Public Function DetectIidSpike (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, pvalueHistoryLength As Integer, Optional side As AnomalySide = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided) As IidSpikeEstimator

Paramètres

catalog
TransformsCatalog

Catalogue de la transformation.

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Les données de colonne sont un vecteur de Double. Le vecteur contient 3 éléments : alerte (valeur non nulle signifie un pic), un score brut et une valeur p.

inputColumnName
String

Nom de la colonne à transformer. Les données de colonne doivent être Single. Si la valeur est définie null, la valeur du outputColumnName fichier sera utilisée comme source.

confidence
Double

Confiance pour la détection des pics dans la plage [0, 100].

pvalueHistoryLength
Int32

Taille de la fenêtre glissante pour calculer la valeur p.

side
AnomalySide

Argument qui détermine s’il faut détecter des anomalies positives ou négatives, ou les deux.

Retours

Exemples

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class DetectIidSpikeBatchPrediction
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify spiking points in the series.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a spike
            const int Size = 10;
            var data = new List<TimeSeriesData>(Size + 1)
            {
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),

                // This is a spike.
                new TimeSeriesData(10),

                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup the estimator arguments
            string outputColumnName = nameof(IidSpikePrediction.Prediction);
            string inputColumnName = nameof(TimeSeriesData.Value);

            // The transformed data.
            var transformedData = ml.Transforms.DetectIidSpike(outputColumnName,
                inputColumnName, 95.0d, Size / 4).Fit(dataView).Transform(dataView);

            // Getting the data of the newly created column as an IEnumerable of
            // IidSpikePrediction.
            var predictionColumn = ml.Data.CreateEnumerable<IidSpikePrediction>(
                transformedData, reuseRowObject: false);

            Console.WriteLine($"{outputColumnName} column obtained " +
                $"post-transformation.");

            Console.WriteLine("Data\tAlert\tScore\tP-Value");

            int k = 0;
            foreach (var prediction in predictionColumn)
                PrintPrediction(data[k++].Value, prediction);

            // Prediction column obtained post-transformation.
            // Data    Alert   Score P-Value
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
            // 10      1       10.00   0.00   <-- alert is on, predicted spike
            // 5       0       5.00    0.26
            // 5       0       5.00    0.26
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
        }

        private static void PrintPrediction(float value, IidSpikePrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2]);

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }

        class IidSpikePrediction
        {
            [VectorType(3)]
            public double[] Prediction { get; set; }
        }
    }
}

S’applique à

DetectIidSpike(TransformsCatalog, String, String, Int32, Int32, AnomalySide)

Attention

This API method is deprecated, please use the overload with confidence parameter of type double.

Créez IidSpikeEstimator, qui prédit des pics dans des séries chronologiques distribuées de manière indépendante (i.i.d.) basées sur des estimations de densité de noyau adaptatives et des scores martingale.

[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator DetectIidSpike (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int pvalueHistoryLength, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided);
public static Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator DetectIidSpike (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int pvalueHistoryLength, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectIidSpike : Microsoft.ML.TransformsCatalog * string * string * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide -> Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator
static member DetectIidSpike : Microsoft.ML.TransformsCatalog * string * string * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide -> Microsoft.ML.Transforms.TimeSeries.IidSpikeEstimator
<Extension()>
Public Function DetectIidSpike (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, pvalueHistoryLength As Integer, Optional side As AnomalySide = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided) As IidSpikeEstimator

Paramètres

catalog
TransformsCatalog

Catalogue de la transformation.

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Les données de colonne sont un vecteur de Double. Le vecteur contient 3 éléments : alerte (valeur non nulle signifie un pic), un score brut et une valeur p.

inputColumnName
String

Nom de la colonne à transformer. Les données de colonne doivent être Single. Si la valeur est définie null, la valeur du outputColumnName fichier sera utilisée comme source.

confidence
Int32

Confiance pour la détection des pics dans la plage [0, 100].

pvalueHistoryLength
Int32

Taille de la fenêtre glissante pour calculer la valeur p.

side
AnomalySide

Argument qui détermine s’il faut détecter des anomalies positives ou négatives, ou les deux.

Retours

Attributs

Exemples

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class DetectIidSpikeBatchPrediction
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify spiking points in the series.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a spike
            const int Size = 10;
            var data = new List<TimeSeriesData>(Size + 1)
            {
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),

                // This is a spike.
                new TimeSeriesData(10),

                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
                new TimeSeriesData(5),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup the estimator arguments
            string outputColumnName = nameof(IidSpikePrediction.Prediction);
            string inputColumnName = nameof(TimeSeriesData.Value);

            // The transformed data.
            var transformedData = ml.Transforms.DetectIidSpike(outputColumnName,
                inputColumnName, 95.0d, Size / 4).Fit(dataView).Transform(dataView);

            // Getting the data of the newly created column as an IEnumerable of
            // IidSpikePrediction.
            var predictionColumn = ml.Data.CreateEnumerable<IidSpikePrediction>(
                transformedData, reuseRowObject: false);

            Console.WriteLine($"{outputColumnName} column obtained " +
                $"post-transformation.");

            Console.WriteLine("Data\tAlert\tScore\tP-Value");

            int k = 0;
            foreach (var prediction in predictionColumn)
                PrintPrediction(data[k++].Value, prediction);

            // Prediction column obtained post-transformation.
            // Data    Alert   Score P-Value
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
            // 10      1       10.00   0.00   <-- alert is on, predicted spike
            // 5       0       5.00    0.26
            // 5       0       5.00    0.26
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
            // 5       0       5.00    0.50
        }

        private static void PrintPrediction(float value, IidSpikePrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2]);

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }

        class IidSpikePrediction
        {
            [VectorType(3)]
            public double[] Prediction { get; set; }
        }
    }
}

S’applique à