BinaryClassificationCatalog.CalibratorsCatalog.Platt Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Surcharges
Platt(Double, Double, String) |
Ajoute une colonne de probabilité en spécifiant le calibrateur plat. |
Platt(String, String, String) |
Ajoute une colonne de probabilité par calibrateur de plat d’entraînement. |
Platt(Double, Double, String)
Ajoute une colonne de probabilité en spécifiant le calibrateur plat.
public Microsoft.ML.Calibrators.FixedPlattCalibratorEstimator Platt (double slope, double offset, string scoreColumnName = "Score");
member this.Platt : double * double * string -> Microsoft.ML.Calibrators.FixedPlattCalibratorEstimator
Public Function Platt (slope As Double, offset As Double, Optional scoreColumnName As String = "Score") As FixedPlattCalibratorEstimator
Paramètres
- slope
- Double
Pente dans la fonction de l’exposant du sigmoid.
- offset
- Double
Décalage dans la fonction de l’exposant du sigmoid.
- scoreColumnName
- String
Nom de la colonne de score.
Retours
Exemples
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
namespace Samples.Dynamic.Trainers.BinaryClassification.Calibrators
{
public static class FixedPlatt
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Download and featurize the dataset.
var data = Microsoft.ML.SamplesUtils.DatasetUtils
.LoadFeaturizedAdultDataset(mlContext);
// Leave out 10% of data for testing.
var trainTestData = mlContext.Data
.TrainTestSplit(data, testFraction: 0.3);
// Create data training pipeline for non calibrated trainer and train
// Naive calibrator on top of it.
var pipeline = mlContext.BinaryClassification.Trainers
.AveragedPerceptron();
// Fit the pipeline, and get a transformer that knows how to score new
// data.
var transformer = pipeline.Fit(trainTestData.TrainSet);
// Fit this pipeline to the training data.
// Let's score the new data. The score will give us a numerical
// estimation of the chance that the particular sample bears positive
// sentiment. This estimate is relative to the numbers obtained.
var scoredData = transformer.Transform(trainTestData.TestSet);
var outScores = mlContext.Data
.CreateEnumerable<ScoreValue>(scoredData, reuseRowObject: false);
PrintScore(outScores, 5);
// Preview of scoredDataPreview.RowView
// Score -0.09044361
// Score -9.105377
// Score -11.049
// Score -3.061928
// Score -6.375817
// Let's train a calibrator estimator on this scored dataset. The
// trained calibrator estimator produces a transformer that can
// transform the scored data by adding a new column names "Probability".
var calibratorEstimator = mlContext.BinaryClassification.Calibrators
.Platt(slope: -1f, offset: -0.05f);
var calibratorTransformer = calibratorEstimator.Fit(scoredData);
// Transform the scored data with a calibrator transfomer by adding a
// new column names "Probability". This column is a calibrated version
// of the "Score" column, meaning its values are a valid probability
// value in the [0, 1] interval representing the chance that the
// respective sample bears positive sentiment.
var finalData = calibratorTransformer.Transform(scoredData);
var outScoresAndProbabilities = mlContext.Data
.CreateEnumerable<ScoreAndProbabilityValue>(finalData,
reuseRowObject: false);
PrintScoreAndProbability(outScoresAndProbabilities, 5);
// Score -0.09044361 Probability 0.4898905
// Score -9.105377 Probability 0.0001167479
// Score -11.049 Probability 1.671815E-05
// Score -3.061928 Probability 0.04688989
// Score -6.375817 Probability 0.001786307
}
private static void PrintScore(IEnumerable<ScoreValue> values, int numRows)
{
foreach (var value in values.Take(numRows))
Console.WriteLine("{0, -10} {1, -10}", "Score", value.Score);
}
private static void PrintScoreAndProbability(
IEnumerable<ScoreAndProbabilityValue> values, int numRows)
{
foreach (var value in values.Take(numRows))
Console.WriteLine("{0, -10} {1, -10} {2, -10} {3, -10}", "Score",
value.Score, "Probability", value.Probability);
}
private class ScoreValue
{
public float Score { get; set; }
}
private class ScoreAndProbabilityValue
{
public float Score { get; set; }
public float Probability { get; set; }
}
}
}
S’applique à
Platt(String, String, String)
Ajoute une colonne de probabilité par calibrateur de plat d’entraînement.
public Microsoft.ML.Calibrators.PlattCalibratorEstimator Platt (string labelColumnName = "Label", string scoreColumnName = "Score", string exampleWeightColumnName = default);
member this.Platt : string * string * string -> Microsoft.ML.Calibrators.PlattCalibratorEstimator
Public Function Platt (Optional labelColumnName As String = "Label", Optional scoreColumnName As String = "Score", Optional exampleWeightColumnName As String = Nothing) As PlattCalibratorEstimator
Paramètres
- labelColumnName
- String
Nom de la colonne d’étiquette.
- scoreColumnName
- String
Nom de la colonne de score.
- exampleWeightColumnName
- String
Nom de l’exemple de colonne de poids (facultatif).
Retours
Exemples
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
namespace Samples.Dynamic.Trainers.BinaryClassification.Calibrators
{
public static class Platt
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Download and featurize the dataset.
var data = Microsoft.ML.SamplesUtils.DatasetUtils
.LoadFeaturizedAdultDataset(mlContext);
// Leave out 10% of data for testing.
var trainTestData = mlContext.Data
.TrainTestSplit(data, testFraction: 0.3);
// Create data training pipeline for non calibrated trainer and train
// Naive calibrator on top of it.
var pipeline = mlContext.BinaryClassification.Trainers
.AveragedPerceptron();
// Fit the pipeline, and get a transformer that knows how to score new
// data.
var transformer = pipeline.Fit(trainTestData.TrainSet);
// Fit this pipeline to the training data.
// Let's score the new data. The score will give us a numerical
// estimation of the chance that the particular sample bears positive
// sentiment. This estimate is relative to the numbers obtained.
var scoredData = transformer.Transform(trainTestData.TestSet);
var outScores = mlContext.Data
.CreateEnumerable<ScoreValue>(scoredData, reuseRowObject: false);
PrintScore(outScores, 5);
// Preview of scoredDataPreview.RowView
// Score -0.09044361
// Score -9.105377
// Score -11.049
// Score -3.061928
// Score -6.375817
// Let's train a calibrator estimator on this scored dataset. The
// trained calibrator estimator produces a transformer that can
// transform the scored data by adding a new column names "Probability".
var calibratorEstimator = mlContext.BinaryClassification.Calibrators
.Platt();
var calibratorTransformer = calibratorEstimator.Fit(scoredData);
// Transform the scored data with a calibrator transfomer by adding a
// new column names "Probability". This column is a calibrated version
// of the "Score" column, meaning its values are a valid probability
// value in the [0, 1] interval representing the chance that the
// respective sample bears positive sentiment.
var finalData = calibratorTransformer.Transform(scoredData);
var outScoresAndProbabilities = mlContext.Data
.CreateEnumerable<ScoreAndProbabilityValue>(finalData,
reuseRowObject: false);
PrintScoreAndProbability(outScoresAndProbabilities, 5);
// Score -0.09044361 Probability 0.423026
// Score -9.105377 Probability 0.02139676
// Score -11.049 Probability 0.01014891
// Score -3.061928 Probability 0.1872233
// Score -6.375817 Probability 0.05956031
}
private static void PrintScore(IEnumerable<ScoreValue> values, int numRows)
{
foreach (var value in values.Take(numRows))
Console.WriteLine("{0, -10} {1, -10}", "Score", value.Score);
}
private static void PrintScoreAndProbability(
IEnumerable<ScoreAndProbabilityValue> values, int numRows)
{
foreach (var value in values.Take(numRows))
Console.WriteLine("{0, -10} {1, -10} {2, -10} {3, -10}", "Score",
value.Score, "Probability", value.Probability);
}
private class ScoreValue
{
public float Score { get; set; }
}
private class ScoreAndProbabilityValue
{
public float Score { get; set; }
public float Probability { get; set; }
}
}
}